In this work, the effect of preparing a composite of copper oxide nanoparticles with carbon on some of its optical properties was studied. The composite preparing process was carried out by exploding graphite electrodes in an aqueous suspension of copper oxide. The properties of the plasma which is formed during the explosion were studied using emission spectroscopy in order to determine the most important elements that are present in the media. The electron’s density and their energy, which is the main factor in the composite process, were determined. The particle properties were studied before and after the exploding process. The XRD showed an additional peak in the copper oxides pattern corresponding to the hexagonal graphite structure for the composite. The UV-visible absorbance for the composite was significantly enhanced. The direct bandgap decreased from 2.55 to 2.4 eV, and the indirect bandgap decreased from 1.1 to 1 eV, for the composite.
In this work, two graphene oxide (GO) samples were prepared using the Hummers method with graphite (g) and KMnO4 (g) ratios of 1:3 (GO3) and 1:6 (GO6). The effect of oxidation degree on the structural, electrical, and dielectric properties of the GO samples was investigated. The structures of the GO samples were studied using various techniques, including X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDXS). XRD analysis revealed an increase in the interlayer spacing and a decrease in the number of layers of the samples with increasing oxidant content. The two GO samples have giant permittivity values of ~105 in the low-frequency
... Show MoreBackground :Evening preparation for colonoscopy is often unsatisfactory and inconvenient. This study was performed to compare the efficacy of bowel preparation at two different timings: night before and morning of endoscopy and to compare the cecal intubation rate and disturbance of sleep hours between these two groups.
Methods: In this prospective randomized endoscopist- blinded trial, 150 patients were enrolled between March 2010 and August 2011. Patients aged between 18 to 80 years needing colonoscopy were included. Patients with prior bowel surgery, suspected bowel obstruction or those who didn't completely fulfill the preparation instructions were excluded. Patients received polyethyelen glycol electrolyte preparation in a mornin
Silver nanoparticles synthesized by different species
The present study focuses on synthesizing solar selective absorber thin films, combining nanostructured, binary transition metal spinel features and a composite oxide of Co and Ni. Single-layered designs of crystalline spinel-type oxides using a facile, easy and relatively cost-effective wet chemical spray pyrolysis method were prepared with a crystalline structure of MxCo3−xO4. The role of the annealing temperature on the solar selective performance of nickel-cobalt oxide thin films (∼725 ± 20 nm thick) was investigated. XRD analysis confirmed the formation of high crystalline quality thin films with a crystallite si
Solid dispersion (SD) is one of the most widely used methods to resolve issues accompanied by poorly soluble drugs. The present study was carried out to enhance the solubility and dissolution rate of Aceclofenac (ACE), a BCS class II drug with pH-dependent solubility, by the SD method. Effervescent assisted fusion technique (EFSD) using different hydrophilic carriers (mannitol, urea, Soluplus®, poloxamer 188, and poloxamer 407) in the presence of an effervescent base (sodium bicarbonate and citric acid) in different drug: carrier: effervescent base ratio and the conventional fusion technique (FSD) were used to prepare ACE SD. Solubility, dissolution rate, Fourier transformation infrared spectroscopy (FTIR), PowderX-ray diffraction
... Show MoreThe adsorption isotherms and kinetic uptakes of Carbon Dioxide (CO2) on fabricated electrospun nonwoven activated carbon nanofiber sheets were investigated at two different temperatures, 308 K and 343 K, over a pressure range of 1 to 7 bar. The activated carbon nanofiber-based on polymer (PAN) precursor was fabricated via electrospinning technique followed by thermal treatment to obtain the carboneous nanofibers. The obtained data of CO2 adsorption isotherm was fitted to various models, including Langmuir, Freundlich, and Temkin. Based on correlation coefficients, the Langmuir isotherm model presented the best fitting with CO2 adsorption isotherms’ experimental data. Raising the equ
Nanocrystalline copper sulphide (Cu2-xS) powders were synthesized by chemical precipitation from their aqueous solutions composed of different molar ratio of copper sulfate dehydrate (CuSO4.5H2O) and thiorea (NH2)2CS as source of Cu+2, S-2 ions respectively, and sodium ethylene diamine tetra acetic acid dehydrate (EDTA) as a complex agent. The compositions, morphological and structural properties of the nanopowders were characterized by energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD), respectively. The compositional results showed that the copper content was high and the Sulfur content was low for both CuS and Cu2S nanopowders. SEM images shows that all products consist of aggregate o
... Show MoreFor aspirin estimated, a molecularly imprinted polymer MIP-ASP electrodes were generated by electro-polymerization process, the electrodes were prepared by combining the template (aspirin) with (vinyl acetate (VA), 1-vinylimidizole (VIZ) as a functional monomer and N, N-methylene bisacrylamide (MBAA) as crosslinkers using benzoyl peroxide (BPO) as an initiator. The efficiency of the membrane electrodes was analyzed by differential pulse voltammetry (DPV). Four electrodes were synthesized using two different plasticizers, di-butyl sebacate (DBS), di-octyl phthalate (DOP) in PVC matrix. Scanning electron microscopy (SEM) was used to describe the generated MIP, studying the electrodes properties, the slope, detection limit, and life
... Show More