An analytical model in the form of a hyperbolic function has been suggested for the axial potential distribution of an electrostatic einzel lens. With the aid of this hyperbolic model the relative optical parameters have been computed and investigated in detail as a function of the electrodes voltage ratio for various trajectories of an accelerated charged-particles beam. The electrodes voltage ratio covered a wide range where the lens may be operated at accelerating and decelerating modes. The results have shown that the proposed hyperbolic field has the advantages of producing low aberrations under various magnification conditions and operational modes. The electrodes profile and their three-dimensional diagram have been determined which showed the possibility of being practically realized.
Abstract:
This research emerged due to the needs of Iraqi social sector for diagnosing the problems ,finding the appropriate solutions,and exploiting the social opportunities to solve these problems .The research problem focused on raising the following question: "Were Iraqi Managers in the Ministry of Labor and Social Affairs able to use their qualifications as social entrepreneurs in the ministry to improve the quality of life of the disadvantaged groups?", In light of that, the importance and objectives of the study were determined, and this research derives its importance from trying to address social problems by measuring the degree of meeting the subjective and objective needs of the custo
The widespread use of the Internet of things (IoT) in different aspects of an individual’s life like banking, wireless intelligent devices and smartphones has led to new security and performance challenges under restricted resources. The Elliptic Curve Digital Signature Algorithm (ECDSA) is the most suitable choice for the environments due to the smaller size of the encryption key and changeable security related parameters. However, major performance metrics such as area, power, latency and throughput are still customisable and based on the design requirements of the device.
The present paper puts forward an enhancement for the throughput performance metric by p
... Show MoreThe present study analyzes the effect of couple stress fluid (CSF) with the activity of connected inclined magnetic field (IMF) of a non-uniform channel (NUC) through a porous medium (PM), taking into account the sliding speed effect on channel walls and the effect of nonlinear particle size, applying long wavelength and low Reynolds count estimates. The mathematical expressions of axial velocity, stream function, mechanical effect and increase in pressure have been analytically determined. The effect of the physical parameter is included in the present model in the computational results. The results of this algorithm have been presented in chart form by applying the mathematical program.
The subject of marketing culture and mental image is one of the important topics in the field of management. There is no study that combines these two variables. The research is important because of the increasing importance of the subject. The future direction of the company in question will support the company's economic and marketing responsibilities. And reflect the company's mental image, as a culture that contributes to changing the reality of the organization investigated by polling the views of a sample of managers in the General Company for Vegetable Oil Industry, which (30) out of the (65) individual, and There are two hypotheses of research: There is a significant
... Show MoreThis paper describes a newly modified wind turbine ventilator that can achieve highly efficient ventilation. The new modification on the conventional wind turbine ventilator system may be achieved by adding a Savonius wind turbine above the conventional turbine to make it work more efficiently and help spinning faster. Three models of the Savonius wind turbine with 2, 3, and 4 blades' semicircular arcs are proposed to be placed above the conventional turbine of wind ventilator to build a hybrid ventilation turbine. A prototype of room model has been constructed and the hybrid turbine is placed on the head of the room roof. Performance's tests for the hybrid turbine with a different number of blades and different values o
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreThis paper presents a new algorithm in an important research field which is the semantic word similarity estimation. A new feature-based algorithm is proposed for measuring the word semantic similarity for the Arabic language. It is a highly systematic language where its words exhibit elegant and rigorous logic. The score of sematic similarity between two Arabic words is calculated as a function of their common and total taxonomical features. An Arabic knowledge source is employed for extracting the taxonomical features as a set of all concepts that subsumed the concepts containing the compared words. The previously developed Arabic word benchmark datasets are used for optimizing and evaluating the proposed algorithm. In this paper,
... Show MoreEarly detection of brain tumors is critical for enhancing treatment options and extending patient survival. Magnetic resonance imaging (MRI) scanning gives more detailed information, such as greater contrast and clarity than any other scanning method. Manually dividing brain tumors from many MRI images collected in clinical practice for cancer diagnosis is a tough and time-consuming task. Tumors and MRI scans of the brain can be discovered using algorithms and machine learning technologies, making the process easier for doctors because MRI images can appear healthy when the person may have a tumor or be malignant. Recently, deep learning techniques based on deep convolutional neural networks have been used to analyze med
... Show More