Cobalt substituted nickel copper ferrite samples with general formula Ni0.95-xCoxCu0.05Fe2O4, where (x= 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by solid-state reactions method at 1373 K for 4h. The samples prepared were examined by X-ray diffraction (XRD(, atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR) and Vickers hardness. X-ray diffraction patterns confirm the formation of a single phase of cubic spinel structure in all the prepared samples . XRD analysis showed that the increase in the cobalt concentration causes an increase in the lattice constant, bulk density (ρm) and the x-ray density (ρx), whereas porosity (p) and crystallite size (D) decrease. The Topography of the surface observed was found to be more uniform and homogeneous when the cobalt concentration increases, leading to a decrease in the roughness of the surface while average grains size increases. The FTIR spectra show two absorption bands, namely the high frequency band (υ1) in the range (1078-1081) cm-1 and the low frequency band (υ2) in the range (418–459) cm-1, which due to the vibrations of the tetrahedral and octahedral sites of Fe+3–O−2, respectively, these bands confirm the spinel structure of the prepared ferrite nanoparticles. Vickers hardness was found to increase with cobalt concentration increases.
Objective: Using green chemistry, an effective, inexpensive, and environmentally safe method, sulfur nanoparticles with specific properties can be prepared and used in nanotechnology. This research aimed to prepare sulfur nanoparticles from chilli pepper extract and determine their effectiveness against colon cancer. Method: Chilli pepper extract obtained from local markets was treated with aqueous sodium thiosulfate (Na2S2O7.5H2O). After mixing, it was continuously stirred, heated, and filtered. NaBH4 was then added, resulting in a yellow precipitate. The precipitate was centrifuged, purified, and dried at 250°C. Results: Standardised tests such as UV-Vis, XRD, SEM, TEM, AFM, and EDX were used, resulting in sulfur nanoparticles with an av
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencie
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75
... Show MoreWe have studied the effect of applying an external magnetic field on the characteristics of iron oxide (IO) nanoparticles (NPs) synthesized by pulsed laser ablation in dimethylformamide (DMF). The NPs synthesized with and without applying of magnetic field were characterized by Fourier transformation infrared spectroscopy (FT-IR), UV–Vis absorption, scanning electron microscope (SEM), atomic force microscope (AFM), and X-ray diffraction (XRD). SEM results confirmed that the particle size was decreased after applying magnetic field.
Advancements in horizontal drilling technologies are utilized to develop unconventional resources, where reservoir temperatures and pressures are very high. However, the flocculation of bentonite in traditional fluids at high temperature and high pressure (HTHP) environments can lower cuttings transportation efficiency and even result in problems such as stuck pipe, decreased rate of penetration (ROP), accelerated bit wear, high torque, and drag on the drill string, and formation damage. The major purpose of the present research is to investigate the performance of low bentonite content water-based fluids for the hole cleaning operation in horizontal drilling processes. Low bentonite content water-based drilling fluids were formulated by re
... Show MoreThis assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
This assay rapidly detects chlorpromazine hydrochloride using its ability to reduce gold ions to form nanoparticles. Its low cost, resilience to interferences and short analysis time could facilitate environmental monitoring and biomedical analysis.
In this work, pure and copper mixed oxide PAni nanofiber thin films are successfully synthesized on silicon substrates by hydrothermal method and spin coating technique at room temperature with thickness of about 325 nm. The structural, surface morphological, optical and photoconductivity properties have been investigated. The XRD results showed that PAni films have crystalline nature, CuO and PAni/CuO nanostructure composites are monoclinic polycrystalline structure. The FESEM images of PAni clearly indicate that it has nanofiber-like structure, whereas the CuO film has spongelike shape. The surface morphology analysis of PAni/CuO composite shows that nanofiber caped with inorganic material which is CuO is a core-shell structure. Op
... Show MoreMixed Kirkuk and Sharki-Baghdad crude oils were distilled into narrow fractions. The range of these narrow fractions were 10oC, starting from IBP to 350oC. The total distillates from mixed Kirkuk and Sharki-Baghdad crude oils were 58.25 vol % and 44.65 vol %, respectively.The hydrocarbons compositions (paraffin, naphthene, aromatic) in light fractions starting from IBP to 250oC were determined by using PONA analysis method. The results show that the paraffin content decreases with increasing mid percent boiling point of the fraction, while the naphthene, and aromatic increase with the increase of mid percent boiling point of mixed Kirkuk and Sharki-Baghdad crude oils. Three groups of empirical equations were developed for the prediction
... Show More