Preferred Language
Articles
/
ijp-944
Comparison between Different Data Image Compression Techniques Applied on SAR Images

In this paper, image compression technique is presented based on the Zonal transform method. The DCT, Walsh, and Hadamard transform techniques are also implements. These different transforms are applied on SAR images using Different block size. The effects of implementing these different transforms are investigated. The main shortcoming associated with this radar imagery system is the presence of the speckle noise, which affected the compression results.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Fri Mar 31 2017
Journal Name
Al-khwarizmi Engineering Journal
Big-data Management using Map Reduce on Cloud: Case study, EEG Images' Data

Database is characterized as an arrangement of data that is sorted out and disseminated in a way that allows the client to get to the data being put away in a simple and more helpful way. However, in the era of big-data the traditional methods of data analytics may not be able to manage and process the large amount of data. In order to develop an efficient way of handling big-data, this work studies the use of Map-Reduce technique to handle big-data distributed on the cloud. This approach was evaluated using Hadoop server and applied on EEG Big-data as a case study. The proposed approach showed clear enhancement for managing and processing the EEG Big-data with average of 50% reduction on response time. The obtained results provide EEG r

... Show More
Crossref
View Publication Preview PDF
Publication Date
Sun Feb 24 2019
Journal Name
Iraqi Journal Of Physics
Adaptive inter frame compression using image segmented technique

The computer vision branch of the artificial intelligence field is concerned with developing algorithms for analyzing video image content. Extracting edge information, which is the essential process in most pictorial pattern recognition problems. A new method of edge detection technique has been introduces in this research, for detecting boundaries.

           Selection of typical lossy techniques for encoding edge video images are also discussed in this research. The concentration is devoted to discuss the Block-Truncation coding technique and Discrete Cosine Transform (DCT) coding technique. In order to reduce the volume of pictorial data which one may need to store or transmit,

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Jun 24 2022
Journal Name
Iraqi Journal Of Science
Compression of Astronomical Image Using Five Modulus Method

The computer vision branch of the artificial intelligence field is concerned with
developing algorithms for analyzing image content. Data may be compressed by
reducing the redundancy in the original data, but this makes the data have more
errors. In this paper image compression based on a new method that has been
created for image compression which is called Five Modulus Method (FMM). The
new method consists of converting each pixel value in an (4x4, 8×8,16x16) block
into a multiple of 5 for each of the R, G and B arrays. After that, the new values
could be divided by 5 to get new values which are 6-bit length for each pixel and it
is less in storage space than the original value which is 8-bits.

View Publication Preview PDF
Publication Date
Tue Sep 27 2022
Journal Name
Journal Of Engineering Research And Sciences
Images Compression using Combined Scheme of Transform Coding

Some problems want to be solved in image compression to make the process workable and more efficient. Much work had been done in the field of lossy image compression based on wavelet and Discrete Cosine Transform (DCT). In this paper, an efficient image compression scheme is proposed, based on a common encoding transform scheme; It consists of the following steps: 1) bi-orthogonal (tab 9/7) wavelet transform to split the image data into sub-bands, 2) DCT to de-correlate the data, 3) the combined transform stage's output is subjected to scalar quantization before being mapped to positive, 4) and LZW encoding to produce the compressed data. The peak signal-to-noise (PSNR), compression ratio (CR), and compression gain (CG) measures were used t

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Aug 23 2013
Journal Name
International Journal Of Computer Applications
Lossless Compression of Medical Images using Multiresolution Polynomial Approximation Model

In this paper, a simple fast lossless image compression method is introduced for compressing medical images, it is based on integrates multiresolution coding along with polynomial approximation of linear based to decompose image signal followed by efficient coding. The test results indicate that the suggested method can lead to promising performance due to flexibility in overcoming the limitations or restrictions of the model order length and extra overhead information required compared to traditional predictive coding techniques.

Crossref (4)
Crossref
View Publication
Publication Date
Sun Jun 11 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Artificial Neural Network for TIFF Image Compression

The main aim of image compression is to reduce the its size to be able for transforming and storage, therefore many methods appeared to compress the image, one of these methods is "Multilayer Perceptron ". Multilayer Perceptron (MLP) method which is artificial neural network based on the Back-Propagation algorithm for compressing the image. In case this algorithm depends upon the number of neurons in the hidden layer only the above mentioned will not be quite enough to reach the desired results, then we have to take into consideration the standards which the compression process depend on to get the best results. We have trained a group of TIFF images with the size of (256*256)  in our research, compressed them by using MLP for each

... Show More
Crossref
View Publication Preview PDF
Publication Date
Fri Oct 01 2021
Journal Name
International Journal Of Electrical And Computer Engineering (ijece)
Color image compression based on spatial and magnitude signal decomposition

<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on

... Show More
Scopus (5)
Crossref (1)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Dec 01 2021
Journal Name
Journal Of Physics: Conference Series
Art Image Compression Based on Lossless LZW Hashing Ciphering Algorithm
Abstract<p>Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and </p> ... Show More
Scopus (2)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Image Compression Using Mapping Transform with Pixel Elimination

     In today's world, digital image storage and transmission play an essential role,where images are mainly involved in data transfer. Digital images usually take large storage space and bandwidth for transmission, so image compression is important in data communication. This paper discusses a unique and novel lossy image compression approach. Exactly 50% of image pixels are encoded, and other 50% pixels are excluded. The method uses a block approach. Pixels of the block are transformed with a novel transform. Pixel nibbles are mapped as a single bit in a transform table generating more zeros, which helps achieve compression. Later, inverse transform is applied in reconstruction, and a single bit value from the table is rem

... Show More
Scopus Crossref
View Publication Preview PDF
Publication Date
Sat Jul 01 2017
Journal Name
Diyala Journal For Pure Science
Crossref
View Publication