Preferred Language
Articles
/
ijp-919
Preparation and properties of Nanostructure Zinc Oxide Thin Films

Zinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using measurements from VISUV
spectrophotometer at wavelength range (300-1100) nm; the
optical characterization shows that the films have an average
transmittance 55% in the VIS regions. The refractive index was
calculated as a function of the photon energy, also the calculated
optical energy gap was 3.3 eV and 3.1 eV for direct and indirect
allowed transition respectively.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Mar 01 2022
Journal Name
Iraqi Journal Of Physics
Effect of pH on the Structural and Optical Properties of Cadmium oxide Thin Films Prepared Using the Successive Ionic Layer Adsorption and Reaction (SILAR) Method

Cadmium oxide (CdO) thin films were deposited using the sequencing ion layer adsorption and reaction (SILAR) method. In this study, the effect of the pH value of an aqueous solution of cadmium acetate at a concentration of 0.2 mol of the cadmium oxide film was determined. The solution source for the cadmium oxide film was cadmium ions and an aqueous ammonia solution. The CdO films were deposited on glass substrates at a temperature of 90 ℃. The cadmium oxide film thickness was determined by the weight difference method at pH values ​​(7.2, 8.2). X-ray diffraction (XRD) and scanning electron microscopy (SEM) showed that the size of the crystals increased with the increase in the solution (pH). While the UV-visible spectra of the fil

... Show More
Crossref
View Publication Preview PDF
Publication Date
Mon Jan 01 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Science
Publication Date
Mon May 14 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Investigation of the Structural, Optical and Electrical Properties of AgInSe2 Thin Films

  The Silver1Indium1Selenide (AgInSe2) (AIS) thin1films of (3001±20) nm thickness  have been1prepared2from the compound alloys2using thermal evaporation2 technique onto the glass2substrate at room temperature, with a deposition rate2(3±0.1) nm2sec-1.

The2structural, optical and electrical3properties have been studied3at different annealing3temperatures (Ta=450, 550 and 650) K.

The amount3or (concentration) of the elements3(Ag, In, Se) in the  prepared alloy3was verified using  an

... Show More
Crossref (7)
Crossref
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
study Of Optical Properties Of Copper-Doped Cds Thin Films

Thin films of CdS:Cu were deposited onto glass substrate temperature 400 °c. The optieal properties have been studied for Cds doped with (1,3, 8) wt% of Cu before and after Gamma irradiation. It was found that the irradiation caused an ( Frenkel defects) where the atom is displaced from its original site leaving vacancy and forming on interstitial atom. It was found the irradiation caused an absorption edge shifting towards long wavelength as a result of the increasing of Cu concentration.

View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Thickness Effect of CuAlTe2 Thin Films on Morphological, Structural and Visual Properties

     CuAlTe2 thin films were evaporation on glass substrates using the technique of thermal evaporation at different range of thickness (200,300,400and500) ±2nm. The structures of these films were investigated by X-ray diffraction method; showing that films possess a good crystalline in tetragonal structure. AFM showed that the grain size increased from (70.55-99.40) nm and the roughness increased from (2.08-3.65) nm by increasing the thickness from (200-500) nm. The optical properties measurements, such as absorbance, transmtance, reflectance, and optical constant as a function of wavelength showed that the direct energy gap decreased from (2.4-2.34) eV by the gain of the thickness.

Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Thu May 25 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Optical and Structural Properties of SnO2 Thin Films Prepared by Sputtering Method

SnO2 thin films of different two thicknesses were prepared an glass substrate by DC magnetron sputtering. The crystal structure and orientation of the films were investigated by XRD patterns. All the deposited films are polycrystalline. The grain size was calculated as 25.35, 28.8 nm. Morphological and compositions of the films were performed by SEM and EDX analyses respectively. The films appeared compact and rougher surface in nature. The allowed direct band gap was evaluated as 3.85 eV, and other optical constants such as refractive index, extinction coefficient, real and imaginary parts of dielectric constants were determined from transmittance spectrum in the wavelength range (300-900) nm and also analyzed.
 

View Publication Preview PDF
Publication Date
Sun Sep 07 2014
Journal Name
Baghdad Science Journal
Structural and Electrical Properties Dependence on Annealing Temperature of Bi Thin Films

In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and

... Show More
Crossref
View Publication Preview PDF
Publication Date
Tue Oct 25 2022
Journal Name
Chalcogenide Letters
Study the properties of Cu2Se thin films for optoelectronic applications

Copper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio

... Show More
Scopus (5)
Crossref (4)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Feb 24 2019
Journal Name
Iraqi Journal Of Physics
The optical properties of a- (GeS2)100-xGax thin films

Thin films whose compositions can be expressed by (GeS2)100-xGax (x=0, 6,12,18) formula were obtained by thermal evaporation technique  of bulk material at a base pressure of ~10-5 torr. Optical transmission spectra of the films were taken in the range of 300-1100 nm then the optical band gap, tail width of localized states,  refractive index, extinction coefficient were calculated. The optical constants were found to increase at low concentration of Ga (0 to12%) while they decreases with further addition of Ga. The optical band gap was found to change in opposite manner to that of optical constants. The variation in the optical parameters are explained in terms of average bond energy

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Mon Oct 01 2018
Journal Name
Ceramics International
Influence of DC magnetron sputtering reaction gas on structural and optical characteristics of Ce-oxide thin films

The influence of the reaction gas composition during the DC magnetron sputtering process on the structural, chemical and optical properties of Ce-oxide thin films was investigated. X-ray diffraction (XRD) studies confirmed that all thin films exhibited a polycrystalline character with cubic fluorite structure for cerium dioxide. X-ray photoelectron spectroscopy (XPS) analyses revealed that cerium is present in two oxidation states, namely as CeO2 and Ce2O3, at the surface of the films prepared at oxygen/argon flow ratios between 0% and 7%, whereas the films are completely oxidized into CeO2 as the aforementioned ratio increases beyond 14%. Various optical parameters for the thin films (including an optical band gap in the range of 2.25–3.

... Show More
Scopus (19)
Crossref (18)
Scopus Clarivate Crossref
View Publication