GaN thin films were deposited by thermal evaporation onto
glass substrates at substrate temperature of 403 K and a thickness of
385 nm . GaN films have amorphous structure as shown in X-ray
diffraction pattern . From absorbance data within the range ( 200-
900 ) nm direct optical energy gap was calculated . Also the others
optical parameters like transmittance T, reflectance R , refractive
index n , extinction coefficient k , real dielectric constant 1 Î , and
imaginary dielectric constant 2 Î were determined . GaN films
have good absorbance and minimum transmittance in the region of
the visible light .
In this work, the Whittaker wave functions were used to study the nuclear density distributions and elastic electron scattering charge form factors for proton-rich nuclei and their corresponding stable nuclei (10,8B, 13,9C, 14,12N and 19,17F). The parameters of Whittaker’s basis were fixed to generate the experimental values of available size radii. The Whittaker basis was connected to harmonic-oscillator basis through boundary condition at match point. The nuclear shell model was opted with pure configuration for all studied nuclei to compute aforementioned studied quantities except 10
A low-cost reverse flow plasma system powered by argon gas pumping was built using homemade materials in this paper. The length of the resulting arc change was directly proportional to the flow rate, while using the thermal camera to examine the thermal intensity distribution and demonstrating that it is concentrated in the centre, away from the walls at various flow rates, the resulting arc's spectra were also measured. The results show that as the gas flow rate increased, so did the ambient temperature. The results show that the medium containing the arc has a maximum temperature of 34.1 ˚C at a flow rate of 14 L/min and a minimum temperature of 22.6 ˚C at a flow rate of 6 L/min.
The importance of specifying proper aggregate grading for achieving satisfactory performance in pavement applications has long been recognized. To improve the specifications for superior performance, there is a need to understand how differences in aggregate gradations within the acceptable limits may affect unbound aggregate base behavior. The effects of gradation on strength, modulus, and deformation characteristics of high-quality crushed rock base materials are described here. Two crushed rock types commonly used in constructing heavy-duty granular base layers in the State of Victoria, Australia, with three different gradations each were used in this study. The gradations used represent the lower, medium, and upper gradation li
... Show MoreIn this study, experimental mortar combinations with 1% micro steel fibers, were examined to create geopolymer mortars. To test the effect of the fibers on the mortar's resistance, the geopolymer mortar was designed with various proportions of more environmentally friendly materials fly ash and slag. The percentage of fly ash by weight was 50, 60, and 70% of the slag. The best results were obtained when a 50:50 ratio of fly ash and slag were mixed with 1% micro steel fibers. The results showed that the mixtures containing fibers performed better in the considered tests (toughness index, ductility index, and resilience index). In the impact resistance test, the mixture contained 50% fly ash by weight of the slag with a temperature of
... Show MoreIn order to implement the concept of sustainability in the field of construction, it is necessary to find an alternative to the materials that cause pollution by manufacturing, the most important of which is cement. Because factory wastes provide siliceous and aluminous materials and contain calcium such as fly ash and slag that are used in the production of high-strength geopolymer concrete with specifications similar to ordinary concrete, it was necessary for developing this type of concrete that is helping to reduce CO2 (dioxide carbon) in the atmosphere. Therefore, the aim of this study was to study the influence of incorporating various percentages of slag as a replacement for fly ash and the effect of sl
... Show MorePreparation of epoxy/ TiO2 and epoxy/ Al2O3 nanocomposites is studed and investigated in this paper. The nano composites are processed by different nano fillers concentrations (0, 0.01, 0.02 ,0.03, 0.04 ,0.05 ,0.07 and 0.1 wt%). The particles sized of TiO2,Al2O3 are about 20–50 nm.Epoxy resin and nano composites containing different shape nano fillers of (TiO2:Al2O3 composites),are shear mixing with ratio 1 to 1,with different nano hybrid fillers concentrations( 0.025 ,0.0 5 ,0.15 ,0.2, and 0.25 wt%) to Preparation of epoxy/ TiO2- Al2O3 hybrid composites. The mechanical properties of nanocomposites such as bending ,wearing, and fatigue are investigated as mechanical properties.
The aim of this work was to capture solar radiation and convert it into solar thermal energy by using a storage material and the heat transfer fluid like oil and water and comparison between them, we used the evacuated tube as a receiver for solar radiation, The results showed that the oil better than water as storage material and the heat transfer fluid and the effective thermal conductivity material and good for power level, rates and durations of charge and discharge cycles.
Natural fibers and particles reinforced composites are being broadly used due to their bio and specific properties such as low density and easy to machine and production with low cost. In this work, water absorption and mechanical properties such as tensile strength, flexural strength and impact strength of recycled jute fibers reinforced epoxy resin were enhanced by treating these fibers with alkaline solution. The recycled jute fibers were treated with different concentration of (NaOH) solution at (25 0C) for a period of (24) hours. From the obtained results, it was found that all these properties are improved when fibers treated with (7.5wt% NaOH) related to untreated fibers. Conversely, the mentioned properties of composit
... Show MoreThis investigation was carried out to examine the effect of replacing partial of flour by dried Lentils (Lens culinaris) to white flour in different percentages on the chemical, sensory and storage properties of the Laboratory bread. The results revealed that replacing 0% than wheat flour by lentil powder (1) control was high significan than the replacing 25 and 35% than wheat flour by lentil powder ( 4 and 5) in flavor and chewiness . The results of sensory evaluation showed that replacing 4 were high significan different than that of replacing 1 in external layer colour. Other replacing percentages, however, did not show significant differences of in comparison with control . In regards with chemical analysis of Iron and copper, i
... Show MoreIn this study a polymeric composite material was prepared by hand
lay-up technique from epoxy resin as a matrix and magnesium oxide
(MgO) as a reinforcement with different weight fraction (5,10,15,
and 20)% to resin. Then the prepared samples were immersed under
normal condition in H2So4(1 M) solution, for periods ranging up to
10 weeks. The result revealed that the diffusion coefficient
decreasing as the concentration of MgO increase. Also we studied
Hardness for the prepared samples before and after immersion. The
result revealed that the hardness values increase as the concentration
of MgO increase, while the hardness for the samples after immersion
in H2SO4 dec