Kidney tumors are of different types having different characteristics and also remain challenging in the field of biomedicine. It becomes very important to detect the tumor and classify it at the early stage so that appropriate treatment can be planned. Accurate estimation of kidney tumor volume is essential for clinical diagnoses and therapeutic decisions related to renal diseases. The main objective of this research is to use the Computer-Aided Diagnosis (CAD) algorithms to help the early detection of kidney tumors that addresses the challenges of accurate kidney tumor volume estimation caused by extensive variations in kidney shape, size and orientation across subjects.
In this paper, have tried to implement an automated segmentation method of gray level CT images. The segmentation process is performed by using the Fuzzy C-Means (FCM) clustering method to detect and segment kidney CT images for the kidney region. The propose method is started with pre-processing of the kidney CT image to separate the kidney from the abdomen CT and to enhance its contrast and removing the undesired noise in order to make the image suitable for further processing. The resulted segmented CT images, then used to extract the tumor region from kidney image defining the tumor volume (size) is not an easy task, because the 2D tumor shape in the CT slices are not regular. To overcome the problem of calculating the area of the convex shape of the hull of the tumor in each slice, we have used the Frustum model for the fragmented data.
Melanoma, a highly malignant form of skin cancer, affects individuals of all genders and is associated with high mortality rates, especially in advanced stages. The use of tele-dermatology has emerged as a proficient diagnostic approach for skin lesions and is particularly beneficial in rural areas with limited access to dermatologists. However, accurately, and efficiently segmenting melanoma remains a challenging task due to the significant diversity observed in the morphology, pigmentation, and dimensions of cutaneous nevi. To address this challenge, we propose a novel approach called DenseUNet-169 with a dilated convolution encoder-decoder for automatic segmentation of RGB dermascopic images. By incorporating dilated convolution,
... Show MoreAbstract
The objective of image fusion is to merge multiple sources of images together in such a way that the final representation contains higher amount of useful information than any input one.. In this paper, a weighted average fusion method is proposed. It depends on using weights that are extracted from source images using counterlet transform. The extraction method is done by making the approximated transformed coefficients equal to zero, then taking the inverse counterlet transform to get the details of the images to be fused. The performance of the proposed algorithm has been verified on several grey scale and color test images, and compared with some present methods.
... Show MoreBackground: Cerebral palsy is non-progressive disorder of posture or movement due to a lesion of the developing brain. It is the commonest physical disability in childhood. Objective: To study the clinical, neurological abnormalities, prevalence of convulsion (epilepsy) & to asses the value of CT scans of brain in patients with cerebral palsy.
In this work, satellite images for Razaza Lake and the surrounding area
district in Karbala province are classified for years 1990,1999 and
2014 using two software programming (MATLAB 7.12 and ERDAS
imagine 2014). Proposed unsupervised and supervised method of
classification using MATLAB software have been used; these are
mean value and Singular Value Decomposition respectively. While
unsupervised (K-Means) and supervised (Maximum likelihood
Classifier) method are utilized using ERDAS imagine, in order to get
most accurate results and then compare these results of each method
and calculate the changes that taken place in years 1999 and 2014;
comparing with 1990. The results from classification indicated that
Texture synthesis using genetic algorithms is one way; proposed in the previous research, to synthesis texture in a fast and easy way. In genetic texture synthesis algorithms ,the chromosome consist of random blocks selected manually by the user .However ,this method of selection is highly dependent on the experience of user .Hence, wrong selection of blocks will greatly affect the synthesized texture result. In this paper a new method is suggested for selecting the blocks automatically without the participation of user .The results show that this method of selection eliminates some blending caused from the previous manual method of selection.
Background: The purpose of this study is to investigate the relationship between the roots of the maxillary posterior teeth and the maxillary sinus using spiral computed tomography, and measured the distances between the roots of the maxillary posterior teeth and the sinus floor. Materials and Methods: The sample of the present study was a total of 120 Iraqi subject (60 males & 60 females) aged (20-60) years old, who admitted to spiral Computed Tomography scan unit in AL-Zahraa hospital in AL-Kut city to have Computed Tomography scan of the brain and paranasal sinuses who had complaints of headaches or with suspicion of sinusitis but without pathological findings in maxillary sinuses. From November 2012 to April 2013, CT sagittal reconstruc
... Show MoreBackground: Imaging has a critical role in the diagnosis and evaluation of cardiac diseases, beginning with chest radiography and fluoro-scopy and progressing to coronary angio-graphy, echocardiography, nuclear medicine and recently multidetector computed tomo-graphy (MDCT) as well as magnetic resonance (MR) imaging
Objective: To highlight the role of Multi-detector CT in the evaluation of coronary artery disease and its importance of being noninvasive diagnostic technique.
Methods: A cross sectional study for 20 patients. Patients were asked to fast 6 hours prior to the examination and the patients with heart rates above 65 beats per minute were given cardio-
... Show More