In this work, a pulsed Nd:YAG laser(out put energy=5J and pulse
duration=300μsec) was used to perform drilling in samples of lead, stainless steel
304, brass, copper and aluminum. Laser irradiation was carried out in both air and
in a suitable chamber of controlled pressure inside. The effect of pressure inside the
chamber on the drilling process was investigated. Then, the chamber was filled with
argon gas to investigate its effect on drilling process where an enhancement in
drilling depth was observed compared to that in case of irradiation in air and
chamber of air pressure. As well, the effect of focus position on the process was
studied with the pressure varying inside the chamber in order to construct a
mathematical model describing such process
Background: Acne is a common disorder experienced by adolescents and persists into adulthood in approximately 12%–14% of cases with psychological and social implications of high gravity. Fractional resurfacing employs a unique mechanism of action that repairs a fraction of skin at a time. The untreated healthy skin remains intact and actually aids the repair process, promoting rapid healing with only a day or two of downtime. Aims: This study, was designed to evaluate the safety and effectiveness of fractional photothermolysis (fractionated Er: YAG laser 2940nm) in treating atrophic acne scars. Methods: 7 females and 3 males with moderate to severe atrophic acne scarring were enrolled in this study that attained private clinic for Derm
... Show MoreThe effect of number of pulses of pulsed laser on materials is studied analytically, different pulses has been used with the same delay time. The depth of possible damage to the surface of copper and titanium as well as depth of the crater to both materials were considered in this study. The study revealed that linear model is only possible when estimating depth of possible damage for copper material, this means that the depth of possible damage increases with the increment of number of laser pulses .As for titanium material, it is found the relationship is nonlinear. The depth of possible damage of titanium and copper is not the same, and copper seems to be more predictable than titanium.
In this work, solid random gain media were fabricated from laser dye solutions containing nanoparticles as scattering centers. Two different rhodamine dyes (123 and 6G) were used to host the highly-pure titanium dioxide nanoparticles to form the random gain media. The spectroscopic characteristics (mainly fluorescence) of these media were determined and studied. These random gain media showed laser emission in the visible region of electromagnetic spectrum. Fluorescence characteristics can be controlled to few nanometers by adjusting the characteristics of the host and nanoparticles as well as the preparation conditions of the samples. Emission of narrow linewidth (3nm) and high intensity in the visible region (533-537nm) was obtained.
In this paper the effects of the contact material on the photovoltaic (PV) characteristics of p-NiO:Au/n-Si solar cells fabricated by using the pulsed laser deposition (PLD) technique had been studied. It shown the p-NiO:Au/n-Si could be successfully used to construct and improve the performance of solar cells by using Au. The conversion efficiency was increased comparable with p-NiO/n-Si solar cells. In this case the NiO:Au layer acts as a hole collector as well as a barrier for charge recombination.
Background: Sperm motility disorder is an important cause of infertility in male, and one of the causes of reduced motility of the sperm is the disorders of the mitochondria because it provides the required energy for sperm motility, Laser biostimulation or low-level laser therapy has a positive effect on the mitochondria and led to increasing the synthesis of ATP. Method: Twenty fresh human semen samples were used in this research study, each sample was separated into two portions, one was used as control which is not exposed to the laser beam and the other was irradiated with the wavelength of 410 nm diode laser with an output power of 100 mW and an exposure time of 60 seconds, then the measurement of
... Show MoreThe effect of the optical feedback on the polarization flipping point and hysteresis loop was studied. The polarization flipping occurred at all angles between the polarizer axis and the laser polarization. The polarization flipping point changed by an optical feedback occurred at angles from 0° to 90°. Ability of choosing or controlling the laser polarization was determined by changing the direction of vertical and horizontal polarization by polarizer rotation in the external cavity from 0° to 90°.
The sample's physical characteristics and laser parameters impact the generation and characterization of Laser-Induced Plasma (LIP), which is a relevant phenomenon in many applications. We investigated the effect of laser energy on laser-induced Zn plasma characterization in this study. A Zn plasma with a repeating frequency of 6 Hz, a first wavelength of 1064 nm, a pulse duration of 10 ns, and a laser energy range of 300 mJ to 500 mJ was created using a Q-switched ND: YAG laser. The basic plasma properties, such as electron temperature and density, were estimated using optical emission spectroscopy (OES). The electrons' temperature was measured by the Boltzmann plot method, and the value of the electrons' temperature ranged from 1.6 eV
... Show MoreIn this work, the effect of Zn dopant on structural and optical properties of cadmium oxides, CdO, thin film were studied prepared by pulse laser deposition on glass substrate then annealed at 250 ᵒC in air. All films were examined by X-ray diffraction and UV- visible spectrometer. The XRD analysis shows appearance of new phase identical with hexagonal ZnO additional with cubic phase at high Zn content, which effected on the optical properties. The optical energy gap increase from 2.45 eV to 2.70 eV with increasing Zn content from 0 to 40 %.
Background and objectives: Whether to use a cold scalpel or laser surgery to remove a lesion in the skin of the craniofacial area is the main question the surgeon asks him- or herself to do. The study tried to extend the literature with data that may help the surgeons to choose the right method. Methods: Thirty patients with intra- and extraoral craniofacial skin lesions managed by Carbone dioxide (CO2) laser surgery. Results: The most common type of lesion treated was melanocytic nevi (15 patients; 50%). Conclusion: The main complication of CO2 laser surgery is the remaining permanent hypopigmentation of the treated area; however, the CO2 laser has many advantages (especially at the time of surgery) making it a good choice for the manageme
... Show MoreThe research work present a sensitive, accurate and fast developed for the determination of oxonium ion (HCl, H2SO4 , HClO4 and tartaric acid). It relies on the formation free iodine molecule from the I--IO3--H3O+ reaction which react with fluorescein sodium salt solution causing to quench the fluorescence light (continuous fluorescence) when irradiated by laser source at 405nm. Optimum parameters were studied giving to specify the chemical and physical parameters. Two line manifold was used. The flow rate of 1.3 and 1.5 mL/min was used, 35μL sample volume no.1 and sample volume no.2 , linear dynamic range extend from 0.05-7, 0.05-7, 0.1-10 and 0.1-10 mMol.l-1 with correlation coefficient of 0.9933, 0.9964, 0.9984 and 0.9973 for HCl, H2
... Show More