The electronic properties and Hall effect of thin amorphous Si1-xGex:H films of thickness (350 nm) have been studied such as dc conductivity, activation energy, Hall coefficient under magnetic field (0.257 Tesla) for measuring carrier density of electrons and holes and Hall mobility as a function of germanium content (x = 0–1), deposition temperature (303-503) K and dopant concentration for Al and As in the range (0-3.5)%. The composition of the alloys and films were determined by using energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS).
This study showed that dc conductivity of a-Si1-xGex:H thin films is found to increase with increasing Ge content and dopant concentration, whereas conductivity activation energy decreases with increasing Ge content and dopant concentration. The carrier density (electrons and holes) of prepared films increases with increasing Ge content, dopant concentration and deposition temperature. The mobility and the mobility activation energy increase with increasing Ge content. The width of localized state is 0.215 eV for a- Si0.5Ge0.5:H thin film deposited at 503 K.
Rare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da
... Show MoreThis work reports the study of heat treatment effect on the structural, morphological, optical and electrical properties of poly [3-hexylthiophene] and its blend with [6,6]-phenyl C61 butyric acid methyl ester ( P3HT:PC61BM). X-ray diffraction (XRD) measurements show that the crystallinity of the films increased with annealing. The evaluation of surface roughness and morphology was investigated using atomic force microscope (AFM), and field emission scanning microscope(FESEM). The optical properties were emphasized a strong optical absorption of P3HT compared with the blend. Hall effect measurement was used to study the electrical properties which revealed there is an increase in the electrical conductivity and Hall mobility of th
... Show MoreSeveral schottky diodes were fabricated from polyaniline/ Carbon nanotube (single and multiwalled) composites. These composites were synthesized with different concentration and two carbon nanotubes types, Single and Multi-Walled Carbon Nanotubes (SWCNT & MWCNT). Aluminum and silver paste were chosen as schottky and ohmic contact respectively. physical and electrical were used to studied these composite by using Atomic Force Microscopy (AFM) and electrical measurements. The Root Mean Square RMS surface roughness of the composite samples was found to be around 4nm. The currentvoltage characteristic were measurements for all samples in the bias range ±15V at room temperature. The results shows the increasing in carbon nanotubes concentration
... Show MoreAt atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MorePhoenix dactylifera l. pinnae (the green leaves of dates palm) were used as natural reinforcing (strengthening) fibers to improve the mechanical properties of polyester as a matrix material, the fibers of the green leaves of dates palm were used in two lengths, 10 and 20mm with five rates of 0, 2.5, 5, 10, and 20% , where the reinforcing with the leaves fibers increases the hardness strength from 76.5 to be about 86.55 , the Impact value raised from about 0.313 to 0.461 , in addition to that the flexural strength from 2.66 to be about 55 , and the thermal conductivity increases from 2.54 𝑤∕𝑚.℃ to 5.41 𝑤∕𝑚.℃. The results of the present search explains that the composite samples reinforced at rate 20% and 10mm fiber length
... Show MoreNumerous drilling additives and materials are used continuously because they are necessary to support and give the required properties of the drilling fluid so that to ensure the stability of the borehole. This paper aspires to evaluate the rheological properties of bentonite (montmorillonite) Trefawey as an alternative to using commercial bentonite. Monitoring and evaluating of the rheological and filtration properties were prepared. This exertion aims to focus on the effect of hematite, and barite on the rheological properties of the three aforementioned bentonite types. An improvement in the rheological properties of bentonite (montmorillonite). Trefawey was observed after adding the previous heavy materials. Hematite has by some
... Show MoreIron-Epoxy composite samples were prepared by added
different weight percentages (0, 5, 10, 15, and 20 wt %) from Iron
particles in the range of (30-40μm) as a particle size. The contents
were mixed carefully, and placed a circular dies with a diameter of
2.5 cm. Different mechanical tests (Shore D Hardness, Tensile
strength, and Impact strength ) were carried out for all samples. The
samples were immersed in water for ten weeks, and after two weeks
the samples were take-out and drying to conducting all mechanical
tests were repeated for all samples. The hardness values increased
when the Iron particle concentration increased while the Impact
strength is not affected by the increasing of Iron particles
c
The present work studies the mechanical properties of SiO2 μPs, and NPs in St/PVA blends. The samples were prepared by casting method as PVA, St/PVA blends at different concentrations (30, 40, 50, and 60 %). DSC and TGA tests were carried out to the samples evolved. The result showed a single glass transition temperature (Tg) for all St /PVA blends that was attributed to the good miscibility of the blends involved. It was found that (Tg) decrease with starch ratio increase. It was seen that (PVA) of (Tg=105 oC); The glass transition temperature which was decrease with starch ratio that was attributed to glass transition relaxation process due to micro-Brownian motion of the main chain back bond. The endothermic peak at 200 oC was attrib
... Show MoreThis work presents the study of the dark current density and the capacitance for porous silicon prepared by photo-electrochemical etching for n-type silicon with laser power density of 10mw/cm2 and wavelength (650nm) under different anodization time (30,40,50,60) minute. The results obtained from this study shows different chara that different characteristic of porous diffecteristics for the different porous Silicon layers.
The specifications of lubricating oil are fundamentally the final product of materials that have been added for producing the desired properties. In this research, spherical nanoparticles copper oxide (CuO) and titanium oxides (TiO2) are added to SAE 15W40 engine oil to study the thermal conductivity, stability, viscosity of nano-lubricants, which are prepared at different concentrations of 0.1%, 0.2%, 0.5%, and 1% by weight, and also their pour point, and flash point as five quality parameters. The obtained results show that CuO nanoparticles in all cases, give the best functionality and effect on engine oil with respect to TiO2. With 0.1 wt. % concentration, the thermal conductivity of CuO/oil and TiO2/
... Show More