A number of glow discharge experiments has been carried out in a relatively large-volume metallic vacuum chamber containing argon at low pressure and immersed in an inhomogeneous magnetic field generated by a solenoidal coil capable of delivering 2100G. Two Paschen curves demonstrating the dependence of the discharge voltage on sparking parameter Pd and magnetic field strength B were deduced. A graphical correlation showing the behaviour of the voltage difference from the two curves on the ratio B/Pd was constructed. Investigations showed a reduction in the nominal impedance of the discharge device of nearly 20% when B reaches a value of 525G. Plasma confinement regions were found around the internal surface of the chamber at the entrance of the electrodes which may be attributed to pressure gradient by JxB effects as well as ExB drifts.
Abstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.
In this work, the plasma parameters (electron temperature and
electron density) were determined by optical emission spectroscopy
(OES) produced by the RF magnetron Zn plasma produced by
oxygen and argon at different working pressure. The spectrum was
recorded by spectrometer supplied with CCD camera, computer and
NIST standard of neutral and ionic lines of Zn, argon and oxygen.
The effects of pressure on plasma parameters were studied and a
comparison between the two gasses was made.
ATAW Eqbal Abdul Ameer'. Shifaa Jameel Ibrahim?, HISTORY Of MEDICINE, 2023
In this paper the effect of nonthermal atmospheric argon plasma on the optical properties of the cadmium oxide CdO thin films prepared by chemical spray pyrolysis was studied. The prepared films were exposed to different time intervals (0, 5, 10, 15, 20) min. For every sample, the transmittance, Absorbance, absorption coefficient, energy gap, extinction coefficient and dielectric constant were studied. It is found that the transmittance and the energy gap increased with exposure time, and absorption. Absorption coefficient, extinction coefficient, dielectric constant decreased with time of exposure to the argon plasma
In this work, we studied the effect of power variation on inductively coupled plasma parameters using numerical simulation. Different values were used for input power (750 W-1500 W), gas temperature 300K, gas pressure (0.02torr), 5 tourns of the copper coil and the plasma was produced at radio frequency (RF) 13.56 MHZ on the coil above the quartz chamber. For the previous purpose, a computer simulation in two dimensions axisymmetric, based on finite element method, was implemented for argon plasma. Based on the results we were able to obtain plasma with a higher density, which was represented by obtaining the plasma parameters (electron density, electric potential, total power, number density of argon ions, el
... Show MoreDC glow discharges were generated between a thin cylindrical anode and a flat cathode, streamers are thought to propagate by photo-ionization; the parameters of photo-ionization depend on the He: CO ratio. Therefore we study streamers in He ( 90%, 80% and 70% ) with (10%, 20% and 30%) CO respectively. The streamer diameter is essentially the change by increase for similar voltage and pressure in all He-CO mixtures.
In this paper, construction microwaves induced plasma jet(MIPJ) system. This system was used to produce a non-thermal plasma jet at atmospheric pressure, at standard frequency of 2.45 GHz and microwave power of 800 W. The working gas Argon (Ar) was supplied to flow through the torch with adjustable flow rate by using flow meter, to diagnose microwave plasma optical emission spectroscopy(OES) was used to measure the important plasma parameters such as electron temperature (Te), residence time (Rt), plasma frequency (?pe), collisional skin depth (?), plasma conductivity (?dc), Debye length(?D). Also, the density of the plasma electron is calculated with the use of Stark broadened profiles
Background Cardiovascular disease (CVD) is a leading cause of death worldwide. Ischemic heart disease is a major cause of morbidity and mortality. Lack of blood supply to the brain can cause tissue death if any of the cerebral veins, carotid arteries, or vertebral arteries are blocked. An ischemic stroke describes this type of event. One of the byproducts of methionine metabolism, the demethylation of methionine, is homocysteine, an amino acid that contains sulfur. During myocardial ischemia, the plasma level of homocysteine (Hcy) increases and plays a role in many methylation processes. Hyperhomocysteinemia has only recently been recognized as a major contributor to the increased risk of cardiovascular disease (CVD) owing to its eff
... Show MoreIn this work the parameters of plasma (electron temperature Te,
electron density ne, electron velocity and ion velocity) have been
studied by using the spectrometer that collect the spectrum of
plasma. Two cathodes were used (Si:Si) P-type and deposited on
glass. In this research argon gas has been used at various values of
pressures (0.5, 0.4, 0.3, and 0.2 torr) with constant deposition time
4 hrs. The results of electron temperature were (31596.19, 31099.77,
26020.14 and 25372.64) kelvin, and electron density (7.60*1016,
8.16*1016, 6.82*1016 and 7.11*1016) m-3. Optical properties of Si
were determined through the optical transmission method using
ultraviolet visible spectrophotometer with in the range
(
In this work the diode planer magnetron sputtering device was
designed and fabricated. This device consists of two aluminum discs
(8cm) diameter and (5mm) thick. The distance between the two
electrodes is 2cm, 3cm, 4cm and 5cm.
Design and construction a double probe of tungsten wire with
(0.1mm) diameter and (1.2mm) length has been done to investigate
electron temperature, electron and ion density under different
distances between cathode and anode. The probes were situated in
the center of plasma between anode and cathode.
The results of this work show that, when the distance between
cathode and anode increased, the electron temperature decreased.
Also, the electron density increases with the increasing