In the present work, a d.c. magnetron sputtering system was designed and fabricated. The chamber of this system was includes from two copper coaxial cylinders where the inner one used as a cathode (target) while the outer one used as the anode with Solenoid magnetic coil located on the outer cylinder (anode). The axial profile of magnetic field for various coil current (from 2A to 14 A) are shown. The plasma characteristics in the normal glow discharge region are diagnostics by the 2.2mm diameter Langmuir probe with different length along the cathode and located at different radial positions 1cm and 2cm from the cathode surface. The result of this work shows that, the electron energy distributions at different radial positions along the cathode surface are non-uniform. Therefore, the plasma characteristics at these radial positions along the cathode surface are non-uniform. So that, the ion bombardment along the cathode are non-uniform in this glow discharge region
In this work; Silicon dioxide (SiO2) were fabricated by pulsed
laser ablation (PLA). The electron temperature was calculated by
reading the data of I-V curve of Langmuir probe which was
employed as a diagnostic technique for measuring plasma properties.
Pulsed Nd:YA Glaser was used for measuring the electron
temperature of SiO2 plasma plume under vacuum environment with
varying both pressure and axial distance from the target surface. The
electron temperature has been measured experimentally and the
effects of each of pressure and Langmuir probe distance from the
target were studied. An inverse relationship between electron
temperature and both pressure and axial distance was observed.
Low-pressure capacitively coupled RF discharge Ar plasma has been studied using Langmuir probe. The electron temperature, electron density and Debay length were calculated under different pressures and electrode gap. In this work the RF Langmuir probe is designed using 4MHz filter as compensation circuit and I-V probe characteristic have been investigated. The pressure varied from 0.07 mbar to 0.1 mbar while electrode gap varied from 2-5 cm. The plasma was generated using power supply at 4MHz frequency with power 300 W. The flowmeter is used to control Argon gas flow in the range of 600 standard cubic centimeters per minute (sccm). The electron temperature drops slowly with pressure and it's gradually decreased when expanding the electro
... Show MoreSevere periodontitis is ranked as the sixth most prevalent disease affecting humankind, with an estimated 740 million people affected worldwide. The diagnosis of periodontal diseases mainly relies upon assessment of conventional clinical parameters. However, these parameters reflect past, rather than current, clinical status or future disease progression and, likely, outcome of periodontal treatment. Specific and sensitive biomarkers for periodontal diseases have been examined widely to address these issues and some biomarkers have been translated as point-of-care (PoC) tests. The aim of this review was to provide an update on PoC tests for use in the diagnosis and management of periodontal diseases. Among the PoC tests developed so
... Show MoreThe dependence of the energy losses or the stopping power for the ion contribution in D- T hot plasma fuels upon the corresponding energies and the related penetrating factorare arrive by using by a theoretical approximation models. In this work we reach a compatible agreement between our results and the corresponding experimental results.
In this study, the use of non-thermal plasma theory to remove toxic gases emitted from a vehicle was experimentally investigated. A non-thermal plasma reactor was constructed in the form of a cylindrical tube made of Pyrex glass. Two stainless steel rods were placed inside the tube to generate electric discharge and plasma condition, by connecting with a high voltage power supply (up to 40 kV). The reactor was used to remove the contaminants of a 1.25-liter 4-cylinder engine at ambient conditions. Several tests have been carried out for a ranging speed from 750 to 4,500 rpm of the engine and varying voltages from 0 to 32 kV. The gases entering the reactor were examined by a gas analyzer and the gases concentration ratio
... Show MoreThis work presents a computer studying to simulate the charging process of a dust grain immersed in plasma with negative ions. The study based on the discrete charging model. The model was developed to take into account the effect of negative ions on charging process of dust grain.
The model was translated to a numerical calculation by using computer programs. The program of model has been written with FORTRAN programming language to calculate the charging process for a dust particle in plasma with negative ion, the time distribution of a dust charge, number charge equilibrium and charging time for different value of ηe (ratio of number density of electron to number density of positive ion).
The present study is a hybrid method of studying the effect of plasma on the living tissue by using the image processing technique. This research explains the effect of microwave plasma on the DNA cell using the comet score application, texture analysis image processing and the effect of microwave plasma on the liver using texture analysis image processing. The study was applied on the mice cells. The exposure to the plasma is done by dividing the mice for four groups, each group includes four mice (control group, 20, 50, 90 second exposure to microwave plasma). The exposure to microwave plasma was done with voltage 175v and gas flow on 2 with room temperature; the statistical features are obtained from the comet score images and the textur
... Show More