The aim of this research is to design and construct a
semiconductor laser range finder operating in the near infrared range
for ranging and designation. The main part of the range finder is the
transmitter which is a semiconductor laser type GaAs of wavelength
0.904 μm with a beam expander and the receiver; a silicon pin
detector biased to approve the fast response time with it's collecting
optics. The transmitters pulse width was 200ns at a threshold current
of 10 Ampere and maximum operating current of 38 Ampere. The
repetition rate was set at 660Hz and the maximum operating output
power was around 1 watt. The divergence of the beam was 0.268o
the efficiency of the laser was 0.03% at a duty cycle of 1.32x10-4.
Special software (ZEMAX EE 2000) was implemented for optimum
optical design.
Photonic Crystal Fiber Interferometers (PCFIs) are widely used for sensing applications. This work presents the fabrication and the characterization of a relative humidity sensor based on a polymer-coated photonic crystal fiber that operates in a Mach- Zehnder Interferometer (MZI) transmission mode. The fabrication of the sensor involved splicing a short (1 cm) length of Photonic Crystal Fiber (PCF) between two single-mode fibers (SMF). It was then coated with a layer of agarose solution. Experimental results showed that a high humidity sensitivity of 29.37 pm/%RH was achieved within a measurement range of 27–95%RH. The sensor also showed good repeatability, small size, measurement accuracy and wide humidity range. The RH sensitivity o
... Show MoreThe present work was done in an attempt to build systematic procedures for treating warts by 810 nm diode laser regarding dose parameters, application parameters and laser safety. The study was done in Al- Kindy Teaching Hospital in Baghdad, Iraq during the period from 1st October 2003 till 1st April 2004. Fifteen patients completed the treatment and they were followed for the period of 3 months. Recalcitrant and extensive warts were selected for the study. Patients were randomly divided into 3 groups to be treated by different laser powers 9, 12 and 15 W, power density of 286 W/cm2, 381W/cm2, 477 W/cm2 pulse duration of 0.2 s, interval of 0.2 s and repeated pulses were used. The mode of application was either circular or radial. Pain oc
... Show MoreBackground Alloys with the addition of zirconium and niobium eliminate the adverse effects of aluminum and vanadium on the nervous system, the possibility of metallosis and the initiation of diseases (including cancers or Alzheimer›s disease). In addition, they have better corrosion resistance, and a Young›s modulus value similar to longitudinal bone tissue. Therefore, only choosing appropriate materials does not guarantee proper functioning of the implants, the surfaces of the implants also have to be suitable to meet the requirements. The laser surface hardening process modifies the surface properties by imparting microstructural changes, whereas surface remelting induces changes in the surface topography, roughness, wettability and w
... Show MoreThe present study was conducted on 20 patients suffering from different types of lesion like
pyogenic granuloma, peripheral giant cell granuloma, mucoceles, pregnancy tumour, Fordyce's granules
and irritating fibroma.The cases were selected from outpatient clinic of the Al Kydhemya Teaching
Hospital. Patients were treated by diode laser (810±20 nm) at the affected areas of the oral cavity with
continuous contact focused mode until excision of the lesion with coagulation of the oozing area after
excision. Patients were followed up after 2 days, 7 days and 2 weeks to assess healing process and any
post operative complication. Some of undiagnosed lesion sent for histopathological examination. No
serious complications w
An analytical method and a two-dimensional finite element model for treating the problem of laser heating and melting has been applied to aluminum 2519T87and stainless steel 304. The time needed to melt and vaporize and the effects of laser power density on the melt depth for two metals are also obtained. In addition, the depth profile and time evolution of the temperature before melting and after melting are given, in which a discontinuity in the temperature gradient is obviously observed due to the latent heat of fusion and the increment in thermal conductivity in solid phase. The analytical results that induced by laser irradiation is in good agreement with numerical results.
The research is concerned about studying the absorption spectrum of the solution coumarin dye C47. The chloroform solvent was used with C47 dye in three different concentrations 10-4, 10-5 and 10-6 M. The laser dye solution was prepared by dissolving the required amount of dye in chloroform alcohol, while studying absorption spectrum before and after irradiation with gamma ray by cobalt-60 source 60Co at exposure time, which are 0, 4, 6 and 18 hours with different absorbed doses 0, 136, 204 and 612 Gy. The results show that red shift in the absorption spectrum was increased by increasing the concentration of laser dye solutions , while the increase of gamma dose led to increase the red shift after irradiation, as the exposure period and irr
... Show MoreThe objective of the present study is to verify the actual carious lesion depth by laser
fluorescence technique using 650 nm CW diode laser in comparison with the histopathological
investigation. Five permanent molar teeth were extracted from adult individuals for different reasons
(tooth impaction, periodontal diseases, and pulp infections); their ages were ranging from 20-25 years
old. Different carious teeth with varying clinical stages of caries progression were examined. An
experimental laser fluorescence set-up was built to perform the work regarding in vitro detection and
quantification of occlusal dental caries and the determination of its actual clinical carious lesion depth by
650 nm CW diode laser (excitat
Infrared photoconductive detectors working in the far-infrared region and room temperature were fabricated. The detectors were fabricated using three types of carbon nanotubes (CNTs); MWCNTs, COOH-MWCNTs, and short-MWCNTs. The carbon nontubes suspension is deposited by dip coating and drop–casting techniques to prepare thin films of CNTs. These films were deposited on porous silicon (PSi) substrates of n-type Si. The I-V characteristics and the figures of merit of the fabricated detectors were measured at a forward bias voltage of 3 and 5 volts as well as at dark and under illumination by IR radiation from a CO2 laser of 10.6 μm wavelengths and power of 2.2 W. The responsivity and figures of merit of the photoconductive detector
... Show MoreThe effect of molecules intersystem crossing (Kisc) on characteristics
(energy and duration) of a Passive Q- switched Laser Pulse has been
studied by mathematical description (rate equations model) for
temporal performance of which was used as a saturable absorber
material (passive switch) with laser. The study shows that the energy
and duration pulse are decreasing while the molecules intersystem
crossing into saturable absorber energy levels is increasing.
The electrical properties of pure NiO and NiO:Au Films which are
deposited on glass substrate with various dopant concentrations
(1wt.%, 2wt%, 3wt.% and 4wt.%) at room temperature 450 Co
annealing temperature will be presented. The results of the hall effect
showed that all the films were p-type. The Hall mobility decreases
while both carrier concentration and conductivity increases with the
increasing of annealing temperatures and doping percentage, Thus,
indicating the behavior of semiconductor, and also the D.C
conductivity from which the activation energy decrease with the
doping concentration increase and transport mechanism of the charge
carriers can be estimated.