Inelastic magnetic electron scattering M1 at Ex =10.23 MeV form factors in Ca-48 have been investigated. The fp shell model space with four orbits and eight neutrons have been considered and FPD6 has been selected between 32 model space effective interactions to generates the model space vectors for the M1 transition with excitation energy Ex =10.23 MeV and for constructing OBDM. Discarded space (core and higher configuration orbits) has been included through the first order perturbation theory to couple the partice-hole pair of excitation in the calculation of the total M1 form factor and regarding the realistic interaction M3Y as a core polarization interaction with six sets of fitting parameters. Finally the theoretical calculations have been consisted with the experimental data for such transition form factor
consideration
In the purposes of faith and destiny
Elastic magnetic M1 electron scattering form factor has been calculated for the ground state J,T=1/2-,1/2 of 13C. The single-particle model is used with harmonic oscillator wave function. The core-polarization effects are calculated in the first-order perturbation theory including excitations up to 5ħω, using the modified surface delta interaction (MSDI) as a residual interaction. No parameters are introduced in this work. The data are reasonably explained up to q~2.5fm-1 .
Results of charge, neutron and matter densities and related form factors for one- proton halo nucleus 8B are presented using a two- frequency shell model approach. We choose a model space for the core of 7Be different from that of the extra one valence proton. One configuration is assumed for the outer proton to be in 1p1/2 - shell. The results of the matter density distributions are compared with those fitted to the experimental data. The calculated proton and matter density distributions of this exotic nucleus exhibit a long tail behavior, which is considered as a distinctive feature of halo nuclei. Elastic electron scattering form factors of this exotic nucleus are also studied. The effects of
... Show MoreCADTEL software was developed to provide the simplest and most versatile computing resource that a wide range of skilled researchers and designers can use. In this paper, a development on this program, relying on sixteen mathematical models, produced a new version of CADTEL software package which focuses on the optimum conditions of Scherzer imaging for round electron magnetic lenses.. These models depend on synthesis procedure which is mainly designed to work with the inverse design problem, and represent the axial magnetic flux density of desirable electron magnetic lens which can be proposed or selected , using the four (zero, low, high, infinite) magnification states. The p
... Show MoreThe purpose of this research its study of Natural Consideration that contributed in turning of Dairy products in Baghdad Governorate , this subject deal with centered geographical location in the midlle of Iraq ,it’s also main market in discharge and marketing to rest of Iraqi’s governorate pointed to it’s an active role in localized of it’s factory(milk ,cheese,cream ,butter, yoghurte)and it’s constant ,thus distributedin all district of Baghdad ,flat governorate surface encourage this industry ,also climate (temperature, wind, (it’s speed and it’s direction) ,rainfull and relative wet) also water resources and it’s influenced that nessacity of production process with important inculclusion that researcher came out throu
... Show MoreAbstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influ
... Show MoreThe ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c
... Show MoreThe Skyrme–Hartree–Fock (SHF) method with MSK7 Skyrme parameter has been used to investigate the ground-state properties for two-neutron halo nuclei 6He, 11Li, 12Be and 14Be. These ground-state properties include the proton, neutron and matter density distributions, the corresponding rms radii, the binding energy per nucleon and the charge form factors. These calculations clearly reveal the long tail characterizing the halo nuclei as a distinctive feature.