The basic analytical formula for particle-hole state densities is derived based on the non-Equidistant Spacing Model (non-ESM) for the single-particle level density (s.p.l.d.) dependence on particle excitation energy u. Two methods are illustrated in this work, the first depends on Taylor series expansion of the s.p.l.d. about u, while the second uses direct analytical derivation of the state density formula. This treatment is applied for a system composing from one kind of fermions and for uncorrected physical system. The important corrections due to Pauli blocking was added to the present formula. Analytical comparisons with the standard formulae for ESM are made and it is shown that the solution reduces to earlier formulae providing more general way to calculate state density. Numerical calculations then are made and the results show that state density behavior with excitation energy deviates from Ericson’s and Williams’ formulae types, especially at higher excitation energies
A new human-based heuristic optimization method, named the Snooker-Based Optimization Algorithm (SBOA), is introduced in this study. The inspiration for this method is drawn from the traits of sales elites—those qualities every salesperson aspires to possess. Typically, salespersons strive to enhance their skills through autonomous learning or by seeking guidance from others. Furthermore, they engage in regular communication with customers to gain approval for their products or services. Building upon this concept, SBOA aims to find the optimal solution within a given search space, traversing all positions to obtain all possible values. To assesses the feasibility and effectiveness of SBOA in comparison to other algorithms, we conducte
... Show MoreIn this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
The dependence of the energy losses or the stopping power for the ion contribution in D- T hot plasma fuels upon the corresponding energies and the related penetrating factorare arrive by using by a theoretical approximation models. In this work we reach a compatible agreement between our results and the corresponding experimental results.
This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback
... Show MoreCadmium sulfide photodetector was fabricated. The CdS nano
powder has been prepared by a chemical method and deposited as a
thin film on both silicon and porous p- type silicon substrates by spin
coating technique. Structural, morphological, optical and electrical
properties of the prepared CdS nano powder are studied. The X-ray
analysis shows that the obtained powder is CdS with predominantly
hexagonal phase. The Hall measurements show that the nano powder
is n-type with carrier concentration of about (-5.4×1010) cm-3. The
response time of fabricated detector was measured by illuminating
the sample with visible radiation and its value was 5.25 msec. The
specific detectivity of the fabricated det
In general, path-planning problem is one of most important task in the field of robotics. This paper describes the path-planning problem of mobile robot based on various metaheuristic algorithms. The suitable collision free path of a robot must satisfies certain optimization criteria such as feasibility, minimum path length, safety and smoothness and so on. In this research, various three approaches namely, PSO, Firefly and proposed hybrid FFCPSO are applied in static, known environment to solve the global path-planning problem in three cases. The first case used single mobile robot, the second case used three independent mobile robots and the third case applied three follow up mobile robot. Simulation results, whi
... Show MoreThe paper uses the Direct Synthesis (DS) method for tuning the Proportional Integral Derivative (PID) controller for controlling the DC servo motor. Two algorithms are presented for enhancing the performance of the suggested PID controller. These algorithms are Back-Propagation Neural Network and Particle Swarm Optimization (PSO). The performance and characteristics of DC servo motor are explained. The simulation results that obtained by using Matlab program show that the steady state error is eliminated with shorter adjusted time when using these algorithms with PID controller. A comparative between the two algorithms are described in this paper to show their effectiveness, which is found that the PSO algorithm gives be
... Show MoreA novel design and implementation of a cognitive methodology for the on-line auto-tuning robust PID controller in a real heating system is presented in this paper. The aim of the proposed work is to construct a cognitive control methodology that gives optimal control signal to the heating system, which achieve the following objectives: fast and precise search efficiency in finding the on- line optimal PID controller parameters in order to find the optimal output temperature response for the heating system. The cognitive methodology (CM) consists of three engines: breeding engine based Routh-Hurwitz criterion stability, search engine based particle
swarm optimization (PSO) and aggregation knowledge engine based cultural algorithm (CA)
Healthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show MoreThe usage of remote sensing techniques in managing and monitoring the environmental areas is increasing due to the improvement of the sensors used in the observation satellites around the earth. Resolution merge process is used to combine high resolution one band image with another one that have low resolution multi bands image to produce one image that is high in both spatial and spectral resolution. In this work different merging methods were tested to evaluate their enhancement capabilities to extract different environmental areas; Principle component analysis (PCA), Brovey, modified (Intensity, Hue ,Saturation) method and High Pass Filter methods were tested and subjected to visual and statistical comparison for evaluation. Both visu
... Show More