The Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride is large compared with other gases and mixtures. The mean electron energy to mixture is increasing at Argon ratios increased
The subject of demand on oil derivative has occupied an important position at present time in the daily life context. The fuel of benzene and gas oil and kerosene is one of basic elements of that concern, and on local , regional and international levels. The oil derivatives have played a leading role in determining the course and nature of development since early 1970 to the present time whether in the productive Arab countries or the importing. The researcher set out from the hypothesis that the increase of the local consumer demand on some of the oil derivatives is because of the internal and external factors accompanied by the inability of the productive capability and local production to confront this increase, and the resort
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreResearchers used different methods such as image processing and machine learning techniques in addition to medical instruments such as Placido disc, Keratoscopy, Pentacam;to help diagnosing variety of diseases that affect the eye. Our paper aims to detect one of these diseases that affect the cornea, which is Keratoconus. This is done by using image processing techniques and pattern classification methods. Pentacam is the device that is used to detect the cornea’s health; it provides four maps that can distinguish the changes on the surface of the cornea which can be used for Keratoconus detection. In this study, sixteen features were extracted from the four refractive maps along with five readings from the Pentacam software. The
... Show MoreAdsorption of Chlorophenol compounds in aqueous solution on Iraqi siliceouns rocks powder have been investigated. UV technique has been used to determine the adsorption isotherms. The results showed that the adsorption isotherms obeyed Freundlich adsorption equation. The adsorption was endothermic process, increasing temperature leads to increasing adsorption. H, S, G were calculated. The results showed that the adsorption increases with increasing acidity of solutions
Criteria to be met in selecting the obtimal areas for generating alternative electric energy from wind
The method of predicting the electricity load of a home using deep learning techniques is called intelligent home load prediction based on deep convolutional neural networks. This method uses convolutional neural networks to analyze data from various sources such as weather, time of day, and other factors to accurately predict the electricity load of a home. The purpose of this method is to help optimize energy usage and reduce energy costs. The article proposes a deep learning-based approach for nonpermanent residential electrical ener-gy load forecasting that employs temporal convolutional networks (TCN) to model historic load collection with timeseries traits and to study notably dynamic patterns of variants amongst attribute par
... Show More