CdS and CdTe thin films were thermally deposited onto glass substrate. The CdCl2 layer was deposited onto CdS surface. These followed by annealing for different duration times to modify the surface and interface of the junction. The diffraction patterns showed that the intensity of the peaks increased with the CdCl2/annealed treatment, and the grain sizes are increased after CdCl2/annealed treatment
The Cu2SiO3 composite has been prepared from the binary compounds (Cu2O, and SiO2) with high purity by solid state reaction. The Cu2SiO3 thin films were deposited at room temperature on glass and Si substrates with thickness 400 nm by pulsed laser deposition method. X-ray analysis showed that the powder of Cu2SiO3 has a polycrystalline structure with monoclinic phase and preferred orientation along (111) direction at 2θ around 38.670o which related to CuO phase. While as deposited and annealed Cu2SiO3 films have amorphous structure. The morphological study revealed that the grains have granular and elliptical shape, with average diameter of 163.63 nm. The electrical properties which represent Hall effect were investigated. Hall coeffici
... Show MoreThis work describes the effect of temperature on the phase transformation of titanium dioxide (TiO2) prepared using metal organic precursors as starting materials. X-ray diffraction (XRD) was used to investigate the structural properties of TiO2 gels calcined at different temperatures (300, 500, 700) ?C. the results showed that the samples have typical peaks of TiO2 polycrystalline brookite nanopowders after calcined at (300 ?C), which confirmed by (111), (121), (200), (012), (131), (220), (040), (231), (132) and (232) diffraction peaks. Also, XRD diffraction spectra showed the presence of crystallites of anatase with low proportion of rutile phase where calcined at (500 ?C), while rutile phase domains at (700 ?C). The crystallite size of
... Show MoreIn the present study NiPcTs, CdS thin films, and Blends of NiPcTs:CdS were prepared with 1:2 content mixing ratio of NiPcTs to CdS solutions. Cadmium chloride and thiourea were used as the essential materials for deposition CdS thin films while using organic powder of NiPcTs to deposit NiPcTs nanostructure films. The spin-coating technique was employed to fabricate the NiPcTs , CdS films and NiPcTs-CdS blend. Structural properties of films have been investigated via X-Ray diffraction(XRD),and show that thin films of NiPcTs, and CdS have monoclinic and polycrystalline hexagonal structure respectively while the blend has two polycrystalline structure with cubic and hexagonal phases. Atomic force microscope (AFM) confirmed that the surf
... Show MoreIn this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien
... Show More(Cu1-x,Agx)2ZnSnSe4 alloys have been fabricated with different Ag content(x=0, 0.1, and 0.2) successfully from their elements. Thin films of these alloys have been deposited on coring glass substrate at room temperature by thermal evaporation technique under vacuum of 10-5Torr with thickness of 800nm and deposition rate of 0.53 nm/sec. Later, films have been annealed in vacuum at (373, and 473)K, for one hour. The crystal structure of fabricated alloys and as deposited thin films had been examined by XRD analysis, which confirms the formation of tetragonal phase in [112] direction, and no secondary phases are founded. The shifting of main polycrystalline peak (112) to lower Bragg’s angle as compared to Cu2ZnSnSe4 angle refers to incorpora
... Show MoreNiO0.99Cu0.01 films have been deposited using thermal evaporation
technique on glass substrates under vacuum 10-5mbar. The thickness
of the films was 220nm. The as -deposited films were annealed to
different annealing temperatures (373, 423, and 473) K under
vacuum 10-3mbar for 1 h. The structural properties of the films were
examined using X-ray diffraction (XRD). The results show that no
clear diffraction peaks in the range 2θ= (20-50)o for the as deposited
films. On the other hand, by annealing the films to 423K in vacuum
for 1 h, a weak reflection peak attributable to cubic NiO was
detected. On heating the films at 473K for 1 h, this peak was
observed to be stronger. The most intense peak is at 2θ = 37