Thin films of microcrystalline and nanocrystalline -silicon carbide and silicon, where deposited on glass substrate with substrate temperature ranging from 350-400C, with deposition rate 0.5nm per pulse, by laser induced chemical vapor deposition. The deposition induced by TEACO2 laser. The reactant gases (SiH4 and C2H4) photo decompose throughout collision associated multiple photon dissociate. Such inhomogeneous film structure containing crystalline silicon, silicon carbide and amorphous silicon carbide matrix, give rise to a new type of material nanocrystalline silicon carbide in which the optical transmittance is governed by amorphous SiC phase while nanocrystalline grain are responsible for the conduction processes. This new material is promised for many new applications, lick high efficiency solar cell.
X-ray diffraction patterns and scanning microscope images revealed that nanocrystalline SiC and Si films grew at substrate temperature above 400C, while completely amorphous films grew at substrate temperature 350C.
structural and electrical of CuIn (Sex Te1-x)2
The influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreIndium Antimonide (InSb) thin films were grown onto well cleaned glass substrates at substrate temperatures (473 K) by flash evaporation. X-ray diffraction studies confirm the polycrystalline of the films and the films show preferential orientation along the (111) plane .The particle size increases with the increase of annealing time .The transmission spectra of prepared samples were found to be in the range (400-5000 cm-1 ) from FTIR study . This indicates that the crystallinity is improved in the films deposited at higher annealing time.
Films of CdSe have been prepared by evaporation technique with thickness 1µm. Doping with Cu was achieved using annealing under argon atmosphere . The Structure properties of these films are investigated by X-ray diffraction analysis. The effect of Cu doping on the orientation , relative intensity, grain size and the lattice constant has been studied. The pure CdSe films have been found consist of amorphous structure with very small peak at (002) plane. The films were polycrystalline for doped CdSe with (1&2wt%) Cu contents and with lattice constant (a=3.741,c=7.096)A°, and it has better crystallinty as the Cu contents increased to (3&5wt%) Cu. The reflections from [(002), (102). (110), (112), and (201)]planes are more prominen
... Show MoreThe CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
The effect of heat treatment using different annealing temperatures on optical properties of bulk heterojunction blend (BHJ) Alq3: C60 thin films which are fabricated by the spin coating technique were investigated in this study. The films have been coated on a glass substrate with speed of 2000 rpm for one min and treated with different annealing temperature (373, 423 and 473) K under vacuum. The optical properties and the chemical bonds structure of blends as-deposited and heat treated have been studied by UV-Vis spectroscopic and Fourier Transform-Infra Red (FTIR) measurements respectively. The results of UV visible show that the optical energy gap decreasing with increasing the annealing temperature for the ratio (100:1) while decrea
... Show MoreIn this research the electrical conductivity and optical measurements were made on the Iron Oxide (Fe2O3) films prepared by chemical spray pyrolysis method as a function of thickness (250, 350, 450, and 550)  20 nm. The measurements of electrical conductivity (σ), activation energies (Ea1, Ea2),and optical constant such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-900) nm have been investigated on (Fe2O3) thin films as a function of thickness. All films contain two types of transport mechanisms, and the electrical conductivity (σ) increases whereas the activation energy (Ea) would decrease as the films thi
... Show MoreThin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic
In this research, the structural and optical properties were studied for Bi2O3 and Bi2O3: Al thin films with different doping ratios ( 1, 2, 3 ) % , which were prepared by thermal evaporation technique under vacuum , with thickness ( 450 ± 20 ) nm deposited on glass substrates at room temperature ( 300 ) K , Structural measurements by ( XRD) techniques demonstrated that all samples prepared have polycrystalline structure with tetragonal structure and a preferred orientation [ 201 ] the &n
... Show MoreIn this paper, SiO2 nanoparticles thin films were synthesised at different PH values of solution by sol gel method at fixed temperature (25oC) and molar ratio (R =H2O/precursor) of (Tetra Ethyl Ortho Silicate) TEOS as precursor at (R=1). The structure and optical properties of the thin films have been investigated. All thin films were tested by using X-RAY diffraction. All X-RAY spectrum can be indexed as monoclinic structure with strong crystalline (110) plane. The morphological properties of the prepared films were studied by SEM. The results indicate that all films are in nano scale and the particle size around (19-62) nm .The size of silica particles increases with increasing PH value of solution where both the rate of hydrolysis and
... Show More