Thin films of microcrystalline and nanocrystalline -silicon carbide and silicon, where deposited on glass substrate with substrate temperature ranging from 350-400C, with deposition rate 0.5nm per pulse, by laser induced chemical vapor deposition. The deposition induced by TEACO2 laser. The reactant gases (SiH4 and C2H4) photo decompose throughout collision associated multiple photon dissociate. Such inhomogeneous film structure containing crystalline silicon, silicon carbide and amorphous silicon carbide matrix, give rise to a new type of material nanocrystalline silicon carbide in which the optical transmittance is governed by amorphous SiC phase while nanocrystalline grain are responsible for the conduction processes. This new material is promised for many new applications, lick high efficiency solar cell.
X-ray diffraction patterns and scanning microscope images revealed that nanocrystalline SiC and Si films grew at substrate temperature above 400C, while completely amorphous films grew at substrate temperature 350C.
In this work the effect of annealing temperature on the structure and the electrical properties of Bi thin films was studied, the Bi films were deposited on glass substrates at room temperature by thermal evaporation technique with thickness (0.4 µm) and rate of deposition equal to 6.66Å/sec, all samples are annealed in a vacuum for one hour. The X-ray diffraction analysis shows that the prepared samples are polycrystalline and it exhibits hexagonal structure. The electrical properties of these films were studied with different annealing temperatures, the d.c conductivity for films decreases from 16.42 ? 10-2 at 343K to 10.11?10-2 (?.cm)-1 at 363K. The electrical activation energies Ea1 and Ea2 increase from 0.031 to 0.049eV and
... Show MoreSpin coating technique used to prepare ZnPc, CdS and ZnPc/CdS blend thin films, these films annealed at 423K for 1h, 2h and 3h. Optical behavior of these films were examined using UV-Vis. and PL. The absorption spectrum of ZnPc shows a decreasing in absorption with the increase of annealing time while CdS spectrum give a clearly absorption peak at~510 nm. Energy gap of ZnPc increases from 1.41 to 1.52 eV by increasing the annealing time. Eg of CdS decrease by increasing annealing time, from 2.3 eV to 2.2 eV. The intensities of the peaks obtained from PL spectra were strongly dependent on annealing time and confirmed the results obtained from UV-Vis. D.C. conductivity measurement showed that all the thin films have two differen
... Show MoreZnIn2(Se1-xTex)4 (ZIST) chalcopyrite semiconductor thin films at various contents (x = 0.0, 0.2, and 0.4) are deposited on glass and p type silicon (111) substrate to produce heterojunction solar cell by using the thermal evaporation technique at RT where the thickness of 500 nm with a vacuum of 1×10-5 mbar and a deposited rates of 5.1 nm/s. This study focuses on how differing x content effect on the factors affecting the solar cell characteristics of ZIST thin film and n-ZIST/p-Si heterojunction. X-ray diffraction XRD investigation shows that this structure of ZIST film is polycrystalline and tetragonal, with (112) preferred orientation at 2θ ≈ 27.01. Moreover, atomic force microscopy AFM is studying the external morphology of
... Show MoreTo enhance interfacial bonding between carbon fibers and epoxy matrix, the carbon fibers have been modified with multiwall carbon nanotubes (MWCNTs) using the dip- coating technique. FT-IR spectrum of the MWCNTs shows a peak at 1640 cm−1 corresponding to the stretching mode of the C=C double bond which forms the framework of the carbon nanotube sidewall. The broad peak at 3430 cm−1 is due to O–H stretching vibration of hydroxyl groups and the peak at 1712 cm−1 corresponds to the carboxylic (C=O) group attached to the carbon fiber. The peaks at 2927 cm−1 and 2862 cm−1 ar
Thin films of GexS1-x were fabricated by thermal evaporating under vacuum of 10-5Toor on glass substrate. The effect of increasing of germanium content (x) in sulfide films on the electrical properties like d.c conductivity (σDC), concentration of charge carriers (nH) and the activation energy (Ea) and Hall effect were investigated. The measurements show that (Ea) increases with the increasing of germanium content from 0.1to0.2 while it get to reduces with further addition, while charge carrier density (nH) is found to decrease and increase respectively with germanium content. The results were explained in terms of creating and eliminating of states in the band gap
The effect of laser radiation on human aorta, coronary, and pulmonary arteries, and pulmonary veins has been investigated. Xenon-Chloride (eximer), Nitrogen, and Nd-YAG pulsed lasers of wavelengths 308, 337, and 1060 nm respectively were used. Their effects on fresh postmortem tissues, normal and diseased, was studied. The diameter and depth of ablation of the exposed tissues, in air, were measured as a function of many factors related to the type of laser and nature of the tissue. The effect of properties of the applied lasers, such as average power density and deposited energy density, on the exposed tissue surface were studied. The increase of these two parameters cause an increase in the depth and diameter of ablation. However the di
... Show MoreField experiments were carried out for the autumn season 2022- 2021 in the field of College of Agricultural Engineering Sciences - University of Baghdad - Jadiriyah Complex –Station A- to study a combination of organic fertilizer (Vermicompost) and cow manure as well as a control treatment (soil only) intertwined with Spraying with silicon, calcium and distilled water (control) in the growth and production of three cultivars of beet (Cylindra, Dark Red, Red) within the design of Completely Randomized Block Design at three replications, The number of treatments was 9 for each replicate. The means were compared according to the least significant difference (L.S.D) at a probability lev