Different ANN architectures of MLP have been trained by BP and used to analyze Landsat TM images. Two different approaches have been applied for training: an ordinary approach (for one hidden layer M-H1-L & two hidden layers M-H1-H2-L) and one-against-all strategy (for one hidden layer (M-H1-1)xL, & two hidden layers (M-H1-H2-1)xL). Classification accuracy up to 90% has been achieved using one-against-all strategy with two hidden layers architecture. The performance of one-against-all approach is slightly better than the ordinary approach
The data preprocessing step is an important step in web usage mining because of the nature of log data, which are heterogeneous, unstructured, and noisy. Given the scalability and efficiency of algorithms in pattern discovery, a preprocessing step must be applied. In this study, the sequential methodologies utilized in the preprocessing of data from web server logs, with an emphasis on sub-phases, such as session identification, user identification, and data cleansing, are comprehensively evaluated and meticulously examined.
Background: Appreciation of the crucial role of risk factors in the development of coronary artery disease (CAD) is one of the most significant advances in the understanding of this important disease. Extensive epidemiological research has established cigarette smoking, diabetes, hyperlipidemia, and hypertension as independent risk factors for CADObjective: To determine the prevalence of the 4 conventional risk factors(cigarette smoking, diabetes, hyperlipidemia, and hypertension) among patients with CAD and to determine the correlation of Thrombolysis in Myocardial Infarction (TIMI) risk score with the extent of coronary artery disease (CAD) in patients with unstable angina /non ST elevation myocardial infarction (UA/NSTEMI).Methods: We
... Show MoreMultiple eliminations (de-multiple) are one of seismic processing steps to remove their effects and delineate the correct primary refractors. Using normal move out to flatten primaries is the way to eliminate multiples through transforming these data to frequency-wavenumber domain. The flatten primaries are aligned with zero axis of the frequency-wavenumber domain and any other reflection types (multiples and random noise) are distributed elsewhere. Dip-filter is applied to pass the aligned data and reject others will separate primaries from multiple after transforming the data back from frequency-wavenumber domain to time-distance domain. For that, a suggested name for this technique as normal move out- frequency-wavenumber domain
... Show MoreIn this research want to make analysis for some indicators and it's classifications that related with the teaching process and the scientific level for graduate studies in the university by using analysis of variance for ranked data for repeated measurements instead of the ordinary analysis of variance . We reach many conclusions for the
important classifications for each indicator that has affected on the teaching process. &nb
... Show MoreThe current paper proposes a new estimator for the linear regression model parameters under Big Data circumstances. From the diversity of Big Data variables comes many challenges that can be interesting to the researchers who try their best to find new and novel methods to estimate the parameters of linear regression model. Data has been collected by Central Statistical Organization IRAQ, and the child labor in Iraq has been chosen as data. Child labor is the most vital phenomena that both society and education are suffering from and it affects the future of our next generation. Two methods have been selected to estimate the parameter
... Show MoreThis study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big
... Show More
Abstract
The Classical Normal Linear Regression Model Based on Several hypotheses, one of them is Heteroscedasticity as it is known that the wing of least squares method (OLS), under the existence of these two problems make the estimators, lose their desirable properties, in addition the statistical inference becomes unaccepted table. According that we put tow alternative, the first one is (Generalized Least Square) Which is denoted by (GLS), and the second alternative is to (Robust covariance matrix estimation) the estimated parameters method(OLS), and that the way (GLS) method neat and certified, if the capabilities (Efficient) and the statistical inference Thread on the basis of an acceptable
... Show MoreEconomic analysis plays a pivotal role in managerial decision-making processes. This analysis is predicated on deeply understanding economic forces and market factors influencing corporate strategies and decisions. This paper delves into the role of economic data analysis in managing small and medium-sized enterprises (SMEs) to make strategic decisions and enhance performance. The study underscores the significance of this approach and its impact on corporate outcomes. The research analyzes annual reports from three companies: Al-Mahfaza for Mobile and Internet Financial Payment and Settlement Services Company Limited, Al-Arab for Electronic Payment Company, and Iraq Electronic Gateway for Financial Services Company. The paper concl
... Show MoreWith the increasing demands to use remote sensing approaches, such as aerial photography, satellite imagery, and LiDAR in archaeological applications, there is still a limited number of studies assessing the differences between remote sensing methods in extracting new archaeological finds. Therefore, this work aims to critically compare two types of fine-scale remotely sensed data: LiDAR and an Unmanned Aerial Vehicle (UAV) derived Structure from Motion (SfM) photogrammetry. To achieve this, aerial imagery and airborne LiDAR datasets of Chun Castle were acquired, processed, analyzed, and interpreted. Chun Castle is one of the most remarkable ancient sites in Cornwall County (Southwest England) that had not been surveyed and explored
... Show More