Preferred Language
Articles
/
ijp-775
Gamma radiation induced changes in the optical properties of CdTe thin films for dosimetric purposes
...Show More Authors

The effect of 0.662MeV gamma radiation on the optical properties of the CdTe thin films was studied. 300nm thickness of CdTe samples were irradiated with doses (10, 20, 30,60krad) in room temperature. The absorption spectra for all the samples were recorded using UV- Visible spectrometer in order to calculate the energy gap, width of localized states and optical constants(refractive index, extinction coefficient, real and imaginary parts of dielectric constant). The optical energy gap was found to decrease from (1.53 to 1.48 eV), while the width of localized states increased from (1.34 to 1.49 eV) with the increasing of radiation dose. The behavior of energy gap with the irradiation dose makes the material a good candidate for dosimetry in industrial applications

View Publication Preview PDF
Quick Preview PDF
Publication Date
Tue Jun 01 2021
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of TiO2:NiO nanoparticles thin films prepare by chemical spray pyrolysis
...Show More Authors

The properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Oct 25 2022
Journal Name
Chalcogenide Letters
Study the properties of Cu2Se thin films for optoelectronic applications
...Show More Authors

Copper selenide (Cu2Se) thin films were prepared by thermal evaporation at RT with thickness 500 nm. The heat-treating for (400 &500) K for the absorber layer has been investigated. This research includes, studying the structural properties of X-ray diffraction (XRD) that show the Cu2Se thin film (Cubic) and has a polycrystalline orientation prevalent (220). Moreover, studying the effect of annealing on their surface morphology properties by using Atomic Force Microscopy AFM. Optical properties were considered using the transmittance and absorbance spectra had been recorded when wavelength range (400 - 1000) nm in order to study the absorption coefficient and energy gap. It was found that these films had allowed direct transitio

... Show More
View Publication
Scopus (12)
Crossref (14)
Scopus Clarivate Crossref
Publication Date
Sun Jun 01 2014
Journal Name
Baghdad Science Journal
The Effect of Annealing on The Structural and Optical Properties of Copper Oxide Thin Films Prepared by SILAR Method
...Show More Authors

Copper oxide thin films were deposited on glass substrate using Successive Ionic Layer Adsorption and Reaction (SILAR) method at room temperature. The thickness of the thin films was around 0.43?m.Copper oxide thin films were annealed in air at (200, 300 and 400°C for 45min.The film structure properties were characterized by x-ray diffraction (XRD). XRD patterns indicated the presence of polycrystalline CuO. The average grain size is calculated from the X-rays pattern, it is found that the grain size increased with increasing annealing temperature. Optical transmitter microscope (OTM) and atomic force microscope (AFM) was also used. Direct band gap values of 2.2 eV for an annealed sample and (2, 1.5, 1.4) eV at 200, 300,400oC respect

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Feb 12 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of ZnO doped Mg thin films deposited by pulse laser deposition (PLD)
...Show More Authors

This paper reports the effect of Mg doping on structural and optical properties of ZnO prepared by pulse laser deposition (PLD). The films deposited on glass substrate using Nd:YAG laser (1064 nm) as the light source. The structure and optical properties were characterized by X-ray diffraction (XRD) and transmittance measurements. The films grown have a polycrystalline wurtzite structure and high transmission in the UV-Vis (300-900) nm. The optical energy gap of ZnO:Mg thin films could be controlled between (3.2eV and 3.9eV). The refractive index of ZnO:Mg thin films decreases with Mg doping. The extinction coefficient and the complex dielectric constant were also investigate.

View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Jan 01 2014
Journal Name
Journal Of The College Of Basic Education
Effect of annealing temperature on Structural and Optical properties of amorphous Selenium thin films
...Show More Authors

Publication Date
Fri Jan 01 2016
Journal Name
Journal Of Multidisciplinary Engineering Science Studies (jmess)
Doping Ratio Of Silver Dependent On The Structure And Optical Properties Of Thin Cadmium Telluride Films
...Show More Authors

Publication Date
Fri Jan 01 2016
Journal Name
World Scientific News
Effect of annealing temperature on the structural and optical properties of CdSe: 1% Ag thin films
...Show More Authors

Publication Date
Sun Mar 07 2010
Journal Name
Baghdad Science Journal
Structural and Optical Properties of Cobalt-Doped Zinc Oxide Thin Films Prepared By Spray Pyrolysis Technique
...Show More Authors

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Feb 04 2019
Journal Name
Iraqi Journal Of Physics
Structural and optical properties of CdO and CdO0.99Cu0.01 thin films prepared by pulsed laser deposition technique
...Show More Authors

Structural and optical properties of CdO and CdO0.99Cu0.01 thin
films were prepared in this work. Cadmium Oxide (CdO) and
CdO0.99Cu0.01semiconducting films are deposited on glass substrates
by using pulsed laser deposition method (PLD) using SHG with Qswitched
Nd:YAG pulsed laser operation at 1064nm in 6x10-2 mbar
vacuum condition and frequency 6 Hz. CdO and CdO0.99Cu0.01 thin
films annealed at 550 C̊ for 12 min. The crystalline structure was
studied by X-ray diffraction (XRD) method and atomic force
microscope (AFM). It shows that the films are polycrystalline.
Optical properties of thin films were analyzed. The direct band gap
energy of CdO and CdO0.99Cu0.01 thin films were determined from
(αhυ)1/2 v

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Apr 04 2016
Journal Name
Iraqi Journal Of Physics
Thickness and gamma-ray effect on physical properties of CdO thin films grown by pulsed laser deposition
...Show More Authors

Polycrystalline Cadmium Oxide (CdO) thin films were prepared using pulsed laser deposition onto glass substrates at room temperature with different thicknesses of (300, 350 and 400)nm, these films were irradiated with cesium-137(Cs-137) radiation. The thickness and irradiation effects on structural and optical properties were studied. It is observed by XRD results that films are polycrystalline before and after irradiation, with cubic structure and show preferential growth along (111) and (200) directions. The crystallite sizes increases with increasing of thickness, and decreases with gamma radiation, which are found to be within the range (23.84-4.52) nm and (41.44-4.974)nm before and after irradiation for thickness 350nm and 4

... Show More