The present work includes a design and characteristics study of a controlling the wavelength of high power diode laser by thermoelectric cooler [TEC] . The work includes the operation of the [TEC] to control the temperature of the diode laser between ( 0- +30) °C by changing the resistance of thermistor. We can control a limited temperature of a diode laser by changing the phase cooling between hot and cold faces of the diode, this process can be attempted by comparator type [LM –311] .The theoretical results give a model for controlling the temperature with, the suitable wavelength.
In this work we investigate and calculate theoretically the variation in a number of optoelectronic properties of AlGaAs/GaAs quantum wire laser, with emphasis on the effect of wire radius on the confinement factor, density of states and gain factor have been calculated. It is found that there exist a critical wire radius (rc) under which the confinement of carriers are very weak. Whereas, above rc the confinement factor and hence the gain increase with increasing the wire radius.
This work presents the characteristics of plasma produced by fundamental wavelength (1064 nm) Q- switched Nd:YAG laser on Ag:Ni alloy in distilled water were investigated at different laser energies by optical emission spectroscopy technique. The size of produced nanoparticles from Ag:Ni target in distilled water were studied, by x-ray diffraction, UV-visible absorbance and atomic force microscopy, at different laser energies. Spectroscopic measurements show that electron temperature and electron density increase with increasing laser energy. It was found from AFM measurements that the produced nanoparticle size decrease from 97.13 nm to 71.20 nm, while XRD shows that the crestalline size decrease from 15.5 nm to 9 nm with increasing pul
... Show MoreThe objective of this paper was to study the laser spot welding process of low carbon steel sheet. The investigations were based on analytical and finite element analyses. The analytical analysis was focused on a consistent set of equations representing interaction of the laser beam with materials. The numerical analysis based on 3-D finite element analysis of heat flow during laser spot welding taken into account the temperature dependence of the physical properties and latent heat of transformations using ANSYS code V.10.0 to simulate the laser welding process. The effect of laser operating parameters on the results of the temperature profile were studied in addition to the effect on thermal stresses and dimensions of the laser w
... Show MoreThis research reports an error analysis of close-range measurements from a Stonex X300 laser scanner in order to address range uncertainty behavior based on indoor experiments under fixed environmental conditions. The analysis includes procedures for estimating the precision and accuracy of the observational errors estimated from the Stonex X300 observations and conducted at intervals of 5 m within a range of 5 to 30 m. The laser 3D point cloud data of the individual scans is analyzed following a roughness analysis prior to the implementation of a Levenberg–Marquardt iterative closest points (LM-ICP) registration. This leads to identifying the level of roughness that was encountered due to the range-finder’s limitations in close
... Show MoreImprovement of optoelectrical characteristics of phosphorus diffused silicon photodiodes by Q-switched Nd:YAG laser pulses was investigated. Laser pulses have dissolved the precipitation of phosphorus resulted during thermal diffusion process. The experimental data show that responsivity higher than (0.32 A/W) at 850 nm can be achieved after laser annealing with (1.5 MW/cm2) for 6 shots.
Semiconductor laser is used in processing many issues related to the scientific, military, medical, industrial and agricultural fields due to its unique properties such as coherence and high strength where GaN-based components are the most efficient in this field. Current technological developments mention to the strong connection of GaN with sustainable electronic and optoelectronic devices which have high-efficiency. The threshold current density of Al0.1Ga0.9N/GaN triple quantum well laser structure was investigated to determine best values of the parameters affecting the threshold current density that are well width, average thickness of active region, cavity length, reflectivity of cavity mirrors and optical confinement factor. The opt
... Show Morewe study how to control the dynamics of excitable systems by using the phase control technique.We study how to control nonlinear semiconductor laser dynamics with optoelectronic feedback using the phase control method. The phase control method uses the phase difference between a small.added frequenc y and the main driving frequency to suppress chaos, which leads to various periodic orbits. The experimental studying for the evaluation of chaos modulation behavior are considered in two conditions, the first condition, when one frequency of the external perturbation is varied, secondly, when two of these perturbations are changed. The chaotic system becomes regular under one frequency or two freq
... Show MoreLaser cleaning of materials’ surfaces implies the removal of deposited pollutants without affecting the material. Nanosecond Nd:YAG pulsed laser, operating at 1064 nm and 532nm, was utilized. Different laser intensities and number of pulses were used on metallic and non-metallic surfaces under O2 and Ar environments to remove metal oxide and crust. Cleaning efficiency was studied by optical microscope. The results indicated the superiority of 1064 nm over the 532 nm wavelength without any detectable damage to materials’ surfaces. Marble cleaned in Oxygen gas environment was better than in Ar gas.