Non thermal argon plasma needle at atmospheric pressure was generated. The experimental set up is based on very simple and low cost electric components that generate electrical field sufficiently high at the electrodes to ionize various gases, which flow at atmospheric pressure. The high d.c power supply is 7.5kV peak to peak, the frequency of the electrical field is 28kHz, and the plasma power less than 15W. The plasma is generated using only one electrode. In the present work the voltage and current discharge waveform are measured. Also the temperature of the working Ar gas at different gas flow and distances from the plasma electrode tip was recorded
Titanium alloy (Ti-6Al-4V) samples were nitrided in low pressure (1.3, 3 mbar) dc-glow discharge plasmas of nitrogen. The treating time was 5, 10 and 15 hour and the temperatures range of the samples during the nitriding process was close to 800oC. The obtained microstructures of the nitride layers were studied by x-ray diffraction and optical microscopy. The ε –Ti2N, ζ-Ti3N3-x and η-Ti3N2-x.phases were formed and addition to the solid solution of nitrogen in titanium, α (Ti,N). Micro hardness measurements exhibit an increment for the Ti-alloy specimens which nitrided at 800oC for 10 and 15h.Corrosion measurements were obtained for the Ti-6Al-4V alloy in Ringer solution after plasma nitriding. The clear improving in the corrosion r
... Show MorePre-breakdown phenomenon was investigated within the two, non-mixed dielectric liquids; transformation oil and cresol. Finite element technique was used to follow the initiation and growth of plasma channels (streamer discharge) within pin-plane configuration. That was done for different spacing between the pin-electrode and the liquid-liquid interface. Streamer growth model assumed that, the streamer initiation occurs at the region of the highest value of electric field. Our study shows that the streamer initiates at the tip of the pin and growths toward the other electrode. The study shows, too, that the streamer path controlled by the difference of permittivity of the two liquids and spacing distance of the liquid-liquid interface fro
... Show MorePlasma physics and digital image processing technique (DIPT) were utilized in this research to show the effect of the cold plasma (plasma needle) on blood cells. The second order statistical features were used to study this effect. Different samples were used to reach the aim of this paper; the patients have leukemia and their leukocytes number was abnormal. By studying the results of statistical features (mean, variance, energy and entropy), it is concluded that the blood cells of the sample showed a good response to the cold plasma.
Experimental results on harmonic distortions in 13.56 MHz RF Argon glow discharge using different grounded electrodes areas and electrodes spacing are presented. The experiment is carried out at four pressure values. RF power values used are between 20 and 90 watts. The results indicate significant increase in distortions at two specific values of the cone angle enclosing the two electrodes within its geometrical volume. The computation of the cone head angle gave the symmetry discharge or asymmetry as well as when the angle is small the condition is near symmetry discharge associated with decrease in the nonlinearity.
A theoretical model is developed to determine time evolution of temperature at the surface of an opaque target placed in air for cases characterized by the formation of laser supported absorption waves (LSAW) plasmas. The model takes into account both plasma dynamics and time variation of incident laser pulse (i.e. pulse shape or profile).Shock tube relations were employed in formulating plasma dynamics over target surface. Gaussian function was chosen in formulating the pulse profile in the present modeling
In this work the diode planer magnetron sputtering device was
designed and fabricated. This device consists of two aluminum discs
(8cm) diameter and (5mm) thick. The distance between the two
electrodes is 2cm, 3cm, 4cm and 5cm.
Design and construction a double probe of tungsten wire with
(0.1mm) diameter and (1.2mm) length has been done to investigate
electron temperature, electron and ion density under different
distances between cathode and anode. The probes were situated in
the center of plasma between anode and cathode.
The results of this work show that, when the distance between
cathode and anode increased, the electron temperature decreased.
Also, the electron density increases with the increasing
A theoretical investigation is carried out to study the effect of a pencil electron beam propagating inside the plasma region determining the hydrodynamic densities distribution with the aid of numerical analysis finite deference method (FDM).The plasma is generated and trapped by annular electron beams of fixed electron density 1x1014 m-3. The result of the study shows that the hydrodynamic density behaves as the increase in pencil electron beam. The hydrodynamic density ratio goes to more than double as the increase in pencil electron beam density to 1x1018 m-3.
In this work, we carried out an experimental study of thedusty
plasma by taking the dust material Fe3O4 with radius of the any grain
0.1μm - 0.5μm. In experiment we use air in the vacuum chamber
system under different low pressure (0.1-1) Torr. The results
illustrated that the present of dust particles in the air plasma did not
effect on Paschen minimum which is 0.5 without dust and with Fe3O4
dusty grains.
The effect of Fe3O4 dust particles on plasma parameters can be
notice in direct current system in glow discharge region. The plasma
parameters which were studied in this work represent plasma
potential, floating potential,electron saturation current, temperatu
In this paper, we study flow of photons rate production in a quark-gluon QG plasma. General theory of this study is based on the field theory for hard interaction. The kinetic of photons production from hard interaction in charm with anti-top to production photons with gluon due to plasma phase at high temperatures (150, 200,250,300 and 350 MeV) .It has been investigated and studied using the postulate of quantum chromodynamic theory QCD .The photons production rate of hard photons with( GeV) are insensitive to strength coupling and depend mainly on the temperature of system T . Despite the different critical temperature (150 and 190MeV) comes, we ï¬nd that same order of flow rate photons magnitude in both cases. In both cases, the f
... Show MoreWhen employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model
... Show More