Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extraction of features like mass lesions in mammograms for early detection of breast cancer. The proposed technique is based on a four-step procedure: (a) the preprocessing of the image is done, (b) regions of interest (ROI) specification, (c) supervised segmentation method includes two stages performed using the minimum distance (MD) criterion, and (d) feature extraction based on Gray level Co-occurrence matrices GLCM for the identification of mass lesions. The method suggested for the detection of mass lesions from mammogram image segmentation and analysis was tested over several images taken from Al-Ilwiya Hospital in Baghdad, Iraq. The proposed technique shows better results
Myoma is a common benign uterine tumor; therefore
it is common in pregnancy. One in ten women will
have complications related to myoma in pregnancy.
Few treatment options are available during pregnancy,
conservative treatment with analgesia, reassurance and
supportive therapy is almost always adequate but in
carefully selected patients, myomectomy has been
performed successfully without jeopardizing
pregnancy outcome. The usual indications for surgery
during pregnancy include torsion of pedunculated
uterine myoma and obstructed labor, surgical
intervention during pregnancy is occasionally
necessary in uncommon cases of intractable pain.
19 years old lady presented with intractable lower
abdominal
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreBackground: Prostatic adenocarcinoma is the most widely recognized malignancy in men and the second cause of cancer-related mortality encountered in male patients after lung cancer.
Aim of the study: To assess the diagnostic value of diffusion weighted imaging (DWI) and its quantitative measurement, apparent diffusion coefficient (ADC), in the identification and localization of prostatic cancer compared with T2 weighted image sequence (T2WI).
Type of the study: a prospective analytic study
Patients and methods: forty-one male patients with suspected prostatic cancer were examined by pelvic MRI at the MRI department of the Oncology Teaching Hospital/Medical City in Baghdad
... Show MoreIn this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic syste
Intrusion detection systems (IDS) are useful tools that help security administrators in the developing task to secure the network and alert in any possible harmful event. IDS can be classified either as misuse or anomaly, depending on the detection methodology. Where Misuse IDS can recognize the known attack based on their signatures, the main disadvantage of these systems is that they cannot detect new attacks. At the same time, the anomaly IDS depends on normal behaviour, where the main advantage of this system is its ability to discover new attacks. On the other hand, the main drawback of anomaly IDS is high false alarm rate results. Therefore, a hybrid IDS is a combination of misuse and anomaly and acts as a solution to overcome the dis
... Show MoreResearchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreBackground: Urinary tract infections (UTIs) and their complications such as Bladder cancer (Bl. C.) are a health growing problem worldwide. Objective: To shed light on this subject, present study was done to investigate relationship between recurrent urinary tract infection (RUTI) due to Escherichia coli (E. coli) and Bl. C.Type of study: Cross-sectional study. Methods: This study included 130 patients with RUTI, 50 patients with Bl. C. and 50 control of both sexes (aged 7-85 years) attending Al-Zahra Teaching Hospital in Al-Kut/Wassit governorate and Al-Harery Teaching Hospital of specialized surgeries/Baghdad. The patients were divided into two groups: the first group (n=130) included those who were suffering from recurrent UTI without
... Show MoreThe subject of an valuation of quality of construction projects is one of the topics which it becomes necessary of the absence of the quantity standards in measuring the control works and the quality valuation standards in constructional projects. In the time being it depends on the experience of the workers which leads to an apparent differences in the valuation.
The idea of this research came to put the standards to evaluate the quality of the projects in a special system depending on quantity scale nor quality specifying in order to prepare an expert system “ Crystal “ to apply this special system to able the engineers to valuate the quality of their projects easily and in more accurate ways.