Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extraction of features like mass lesions in mammograms for early detection of breast cancer. The proposed technique is based on a four-step procedure: (a) the preprocessing of the image is done, (b) regions of interest (ROI) specification, (c) supervised segmentation method includes two stages performed using the minimum distance (MD) criterion, and (d) feature extraction based on Gray level Co-occurrence matrices GLCM for the identification of mass lesions. The method suggested for the detection of mass lesions from mammogram image segmentation and analysis was tested over several images taken from Al-Ilwiya Hospital in Baghdad, Iraq. The proposed technique shows better results
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreIn this work, Kinetic Phosphorescence Analyzer (KPA) has been used to measure the concentrations of uranium (UC) and Amorphous crystals (AMO) in urine samples of breast cancer patients in Baghdad. Additionally, a relation between UC and AMO with respect to patient's age has been deduced and studied.
Forty one urine samples of patients and five for healthy were taken from females lived in different residential area of Baghdad. The measured maximum UC value for urine samples of patients was 2.35 ± 0.053, the minimum value was 0.86 ± 0.034 μg/L, and an overall average was 1.6 ± 0.027 μg/L while the average UC for healthy females was 1.03 ± 0.020 μg/L.
From these results, AMO concentrations were found for all breast cancer patie
An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men
... Show MoreBackground: Breast cancer is the most frequently diagnosed malignancy and the second leading cause of mortality among women in Iraq forming 23% of cancer related deaths. The low survival from the disease is a direct consequence to the advanced stages at diagnoses. Aim: To document the composite stage of breast cancer among Iraqi patients at the time of diagnosis; correlating the observed findings with other clinical and pathological parameters at presentation. Patients and Methods: A retrospective study enrolling the clinical and pathological characteristics of 603 Iraqi female patients diagnosed with breast cancer. The composite stage of breast cancer was determined according to UICC TNM Classification System of Breast Cancer and the Ameri
... Show MoreBackground: In young adults, multiple sclerosis is a prevalent chronic inflammatory demyelinating condition. It is characterized by white matter affection, but many individuals also have significant gray matter involvement. A double-inversion recovery pulse (DIR) pattern was recently proposed to improve the visibility of multiple sclerosis lesions. Objective: To find out how well a DIR sequence, FLAIR, and T2-weighted pulse sequences can find MS lesions in the supratentorial and infratentorial regions. Methods: A total of 37 patients with established diagnoses of multiple sclerosis were included in this cross-sectional study. Brain MRI was done using double inversion recovery, T2, and FLAIR sequences. The number of lesions was count
... Show MoreBackground: Liver metastasis significantly complicates cancer prognosis, yet easily accessible markers for its early detection and monitoring remain crucial. This study aimed to comprehensively evaluate key hematological parameters as potential indicators for liver metastasis in Iraqi patients. Methods: We conducted a cross-sectional study comparing hematological profiles between 90 patients (presumably with liver metastasis) and 30 healthy controls. White Blood Cell (WBC) count, Lymphocyte percentage, Neutrophil percentage, and Neutrophil-to-Lymphocyte Ratio (NLR) were analyzed. Given non-normal data distributions (confirmed by the Shapiro-Wilk test), group comparisons were performed using the non-parametric Mann-Whitney U test.
... Show More