Mammography is at present one of the available method for early detection of masses or abnormalities which is related to breast cancer. The most common abnormalities that may indicate breast cancer are masses and calcifications. The challenge lies in early and accurate detection to overcome the development of breast cancer that affects more and more women throughout the world. Breast cancer is diagnosed at advanced stages with the help of the digital mammogram images. Masses appear in a mammogram as fine, granular clusters, which are often difficult to identify in a raw mammogram. The incidence of breast cancer in women has increased significantly in recent years.
This paper proposes a computer aided diagnostic system for the extraction of features like mass lesions in mammograms for early detection of breast cancer. The proposed technique is based on a four-step procedure: (a) the preprocessing of the image is done, (b) regions of interest (ROI) specification, (c) supervised segmentation method includes two stages performed using the minimum distance (MD) criterion, and (d) feature extraction based on Gray level Co-occurrence matrices GLCM for the identification of mass lesions. The method suggested for the detection of mass lesions from mammogram image segmentation and analysis was tested over several images taken from Al-Ilwiya Hospital in Baghdad, Iraq. The proposed technique shows better results
The rapid increase in the number of older people with Alzheimer's disease (AD) and other forms of dementia represents one of the major challenges to the health and social care systems. Early detection of AD makes it possible for patients to access appropriate services and to benefit from new treatments and therapies, as and when they become available. The onset of AD starts many years before the clinical symptoms become clear. A biomarker that can measure the brain changes in this period would be useful for early diagnosis of AD. Potentially, the electroencephalogram (EEG) can play a valuable role in early detection of AD. Damage in the brain due to AD leads to changes in the information processing activity of the brain and the EEG which ca
... Show MoreBreast cancer is the most diagnosed form of malignant tumour in Iraqi women. Tamoxifen and trastuzumab are highly effective adjuvant therapy for breast cancer.
This study's objectives were to define the patient's belief in tamoxifen or trastuzumab when used as adjuvant therapy and to determine the variation in belief between the two medications in a sample of Iraqi breast cancer patients.
The cross-section survey was conducted using the BMQ-Specific questionnaire. Ninety-seven participants (sixty-seven tamoxifen, thirty trastuzumab) participated in this study.
The mean of specific-necessity scale for tamoxifen was (3.7) and for trastuzumab (4). The findings showed a high necessity for both medicines, and there wer
... Show MoreObjective: We hypothesized that attacking cancer cells by combining various modes of action can hinder them from taking the chance to evolve resistance to treatment. Incorporation of photodynamic therapy (PDT) with oncolytic virotherapy might be a promising dual approach to cancer treatment. Methods: NDV AMHA1 strain as virotherapy in integration with aminolaevulinic acid (ALA) using low power He-Ne laser as PDT in the existing work was examined against breast cancer cells derived from Iraqi cancer patients named (AMJ13). This combination was evaluated using Chou–Talalay analysis. Results: The results showed an increased killing rate when using both 0.01 and 0.1 Multiplicity of infection (MOI) of the virus when combined with a dose of 617
... Show MoreThis cross-sectional, questionnaire-based study evaluated the knowledge, attitude and practice towards breast cancer and breast self-examination [BSE] among 387 [302 females and 85 males] educated Iraqis affiliated to 2 Iraqi universities. The participants were categorized into 3 occupations: student [71.3%], teaching staff [10.3%] and administrative staff [18.3%]. About half of the participants had a low knowledge score [< 50%]; only 14.3% were graded as [Good] and above. Almost 75% of the participants believed that the best way to control breast cancer was through early detection and other possible preventive measures. Most participants [90.9%] had heard of BSE, the main source of informatio
... Show MoreMultiple single-nucleotide polymorphisms (SNPs) located in the intergenic region between estrogen receptor 1 and
To assess the potential association between rs3757318 SNP and breast cancer pathogenicity, specifically in relation to serum vitam
The cuneiform images need many processes in order to know their contents
and by using image enhancement to clarify the objects (symbols) founded in the
image. The Vector used for classifying the symbol called symbol structural vector
(SSV) it which is build from the information wedges in the symbol.
The experimental tests show insome numbersand various relevancy including
various drawings in online method. The results are high accuracy in this research,
and methods and algorithms programmed using a visual basic 6.0. In this research
more than one method was applied to extract information from the digital images
of cuneiform tablets, in order to identify most of signs of Sumerian cuneiform.
Automatic recognition of individuals is very important in modern eras. Biometric techniques have emerged as an answer to the matter of automatic individual recognition. This paper tends to give a technique to detect pupil which is a mixture of easy morphological operations and Hough Transform (HT) is presented in this paper. The circular area of the eye and pupil is divided by the morphological filter as well as the Hough Transform (HT) where the local Iris area has been converted into a rectangular block for the purpose of calculating inconsistencies in the image. This method is implemented and tested on the Chinese Academy of Sciences (CASIA V4) iris image database 249 person and the IIT Delhi (IITD) iris
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show More