The effects of BaCl2 dopant on the optical properties of poly (vinyl alcohol) have been investigated. Pure and BaCl2 doped PVA films were prepared using solvent casting method. These films were characterized using UV/VIS technique in order to estimate the kind of transition which was found to be indirect transition. The value of the optical energy gap was decrease with increasing dopant concentration.
Refractive index, extinction coefficient and Urbach tail have been also investigated; it was found that all the above parameters affects by doping.
CuAlTe2 thin films were evaporation on glass substrates using the technique of thermal evaporation at different range of thickness (200,300,400and500) ±2nm. The structures of these films were investigated by X-ray diffraction method; showing that films possess a good crystalline in tetragonal structure. AFM showed that the grain size increased from (70.55-99.40) nm and the roughness increased from (2.08-3.65) nm by increasing the thickness from (200-500) nm. The optical properties measurements, such as absorbance, transmtance, reflectance, and optical constant as a function of wavelength showed that the direct energy gap decreased from (2.4-2.34) eV by the gain of the thickness.
The densities and visconsities of solutions of poly(vinyl alcohol)(PVA) molccuar weight (14)kg.mol-1in water up to 0.035%mol.kg-1
The nanocomposite on the base of synthesis Copper iodide
nanoparticles and polyvinyl alcohol (PVA/CuI) with different
concentration of CuI were obtained using casting technique.
PVA/CuI polymer composite samples have been prepared and
subjected to characterizations using FTIR spectroscopy, The FTIR
spectral analysis shows remarkable variation of the absorption peak
positions with increasing CuI concentration. The obtained results by
X-ray diffraction indicated the formation of cubic CuI particles. The
effects of CuI concentrations on the optical properties of the PVA
films were studied in the region of wavelength, (190-1100) nm.
From the derivation of Tauc's relation it was found that the direct
allowed t
A pulsed (TEA-0O2) laser was used to dissociate molecules of silane ethylene (C2I-14) and ammonia (NH3) gases, through collision assisted multiple photon dissociation (MPD) to deposit(SiC i_xNx) thin films, where the X-values are 0, 0.13 and 0.33, on glass substrate at T,----648 K. deposition rate of (0.416-0.833) nm/pulse and thickness of (500-1000)nm .Fourier transform infrared spectrometry (FT-IR) was used to study the nature of the chemical bonds that exist in the films. Results revealed that these films contain complex networks of the atomic (Si, C, and N), other a quantity of atomic hydrogen and chemical bonds such as (Si-N, C-N, C-14 and N-H).Absorbance and Transmittance spectra in the wavelength range (400-1100) nm were used to stud
... Show MoreDiamond-like carbon (DLC) homogeneous thin films were deposited from cyclohexane (Ccyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (Ccyclohexane (C cyclohexane (Ccyclohexane (C 6H12 ) liquid by using a plasma jet system which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with alternating high voltage 7.5 which operates with alternating high voltage 7.5which operates with al
... Show MoreZinc Oxide (ZnO) is probably the most typical II-VI
semiconductor, which exhibits a wide range of nanostructures. In
this paper, polycrystalline ZnO thin films were prepared by chemical
spray pyrolysis technique, the films were deposited onto glass
substrate at 400 °C by using aqueous zinc chloride as a spray
solution of molar concentration of 0.1 M/L.
The crystallographic structure of the prepared film was analyzed
using X-ray diffraction; the result shows that the film was
polycrystalline, the grain size which was calculated at (002) was
27.9 nm. The Hall measurement of the film studied from the
electrical measurements show that the film was n-type. The optical
properties of the film were studied using
An optical system including quantum dot cylindrical Fresnel lens (CFL) has been designed by using Zemax optical designing program. Quantum dot cylindrical Fresnel lens has a relatively small thickness compared to conventional lenses and high absorbance. It contains grooves in the form of parallel lines, and each groove represents an individual lens that works to change the path of light falling on it to a single focal line. (CFL) is characterized by its small focal length despite its large area and small thickness, due to the nature of its design that gives this feature, which is applied in many optical systems (imaging and non- imaging system). In this paper, the visual properties of the (CFL) were studied as it is one of the impor
... Show MoreIn this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
Films of PMMA and copper sulphate doped PMMA have been prepared by casting method. Absorbance and transmittance spectra were recorded in the wavelength range (300-900) nm in order to calculate, single oscillator energy, dispersion energy, average oscillator strength, the refractive index at infinite wavelength, M-1 and M -3 moments of the optical spectra, it was found that all these parameters were effected by doping.