Thin films of highly pure (99.999%) Tellurium was prepared by high vacuum technique (5*10-5torr), on glass substrates .Thin films have thickness 0.6m was evaporated by thermal evaporation technique. The film deposited was annealed for one hour in vacuum of (5*10-4torr) at 373 and 423 K. Structural and electrical properties of the films are studies. The x-ray diffraction of the film represents a poly-crystalline nature in room temperature and annealed film but all films having different grain sizes. The d.c. electrical properties have been studied at low and at relatively high temperatures and show that the conductivity decreases with increasing temperature at all range of temperature. Two types of conduction mechanisms were found to dominate in the measured temperature range
Tin Selenide (SnSe) Nano crystalline thin films of thickness 400±20 nm were deposited on glass substrate by thermal evaporation technique at R.T under a vacuum of ∼ 2 × 10− 5 mbar to study the effect of annealing temperatures (as-deposited, 100, 150 and 200) °C on its structural, surface morphology and optical properties. The films structure was characterized using X-ray diffraction (XRD) which showed that all the films have polycrystalline in nature and orthorhombic structure, with the preferred orientation along the (111) plane. These films was synthesized of very fine crystallites size of (14.8-24.5) nm, the effect of annealing temperatures on the cell parameters, crystallite size and dislocation density were observed.
... Show More
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
Polyaniline Multi walled Carbon nanotubes (PANI/MWCNTs) nanocomposite thin films have been prepared by non-equilibrium atmospheric pressure plasma jet on glass substrate with different weight percentage of MWCNTs 1, 2, 3, 4%. The diameter of the MWCNTs was in the range of 8-55 nm and length - - 55 55 μm. the nanocomposite thin films were characterized by UV-VIS, XRD, FTIR, and SEM. The optical studies show that the energy band gap of PANI/MWCNTs nanocomposites thin films will be different according to the MWCNTs polyaniline concentration. The XRD pattern indicates that the synthesized PANI/MWCNTs nanocomposite is amorphous. FTIR reveals the presence of MWCNTs nanoparticle embedded into polyaniline. SEM surface images show that the MWCNT
... Show MoreThe structural, optical and electrical properties of ZnS films prepared by vacuum evaporation technique on glass substrate at room temperature and treated at different annealing temperatures (323, 373, 423)K of thickness (0.5)µm have been studied. The structure of these films is determined by X-ray diffraction (XRD). The X-ray diffraction studies show that the structure is polycrystalline with cubic structure, and there are strong peaks at the direction (111). The optical properties investigated which include the absorbance and transmittance spectra, energy band gab, absorption coefficient, and other optical constants. The results showed that films have direct optical transition. The optical band gab was found to be in the range t
... Show MorePMMA/TiO2 homogeneous thin films were deposited by using plasma jet system under normal atmospheric pressure and room temperature. PMMA/TiO2 nanocomposite thin film synthesized by plasma polymerization. Titanium oxide was mixed with Methyl Methacrylate Monomer (MMA) with specific weight ratios (1, 3 and 5 grams of TiO2 per 100 ml of MMA). Optical properties of PMMA/TiO2 nanocomposite thin films were characterized by UV-Visible absorption spectra using a double beam UV-Vis-NIR Spectrophotometer. The thin films surface morphological analysis is carried out by employing SEM. The structure analysis are achieved by X-ray diffraction. UV-Visible absorption spectra shows that the increasing the concentration of titanium oxide added to the polym
... Show MoreHybrid bilayer heterojunction Zinc Phthalocyanine (ZnPc) thin-film P-type is considered as a donor active layer as well as the Zinc Oxide (ZnO) thin film n-type is considered as an acceptor with (Electron Transport Layer). In this study, using the technique of Q-switching Nd-YAG Pulsed Laser Deposition (PLD) under vacuum condition 10-3 torr on two ITO (Indium Tin Oxide) and (AL) electrodes and aluminum, is used to construct the hydride bilayer photovoltaic solar cell heterojunction (PVSC). The electrical properties of hybrid heterojunction Al/ZnPc/ZnO/ITO thin film are studied. The results show that the voltage of open circuit (V_oc=0.567V), a short circuit (I_sc=36 ?A), and the fill factor (FF) of 0.443. In addition, the conversion
... Show MoreABSTRACT: Thin film of CdS has been deposited onto clean glass substrate by using Spray pyrolysis technique. Results of Morphological (AFM) studied; electrical properties and optical conductivity studied are analysis. AFM results show a crystalline nature of the films. From the conductivity measurement at different temperatures, the activation energy of the films was calculated and found to be between 0.188 - 0.124 eV for low temperature regions, and between 1.67-1.19eV for high temperature regions. Hall measurements of electrical properties at room temperature show that the resistivity and mobility of CdS polycrystalline films deposited at 400 C0, were 3.878x103 . cm and 1.302x104cm2/ (V.s), respectively. The electrical conductivity of th
... Show MoreBixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measureme
... Show MoreThe structural properties of ternary chalcopyrite AgAlSe2 compound alloys and thin films that prepared by the thermal evaporation method at room temperature on glass substrate with a deposition rate (5±0.1) nm s-1 for different values of thickness (250,500 and 750±20) nm, have been studied, using X-ray diffraction technology. As well as, the optical properties of the prepared films have been investigated. The structural investigated shows that the alloy has polycrystalline structure of tetragonal type with preferential orientation (112), while the films have amorphous structure. Optical measurement shows that AgAlSe2 films have high absorption in the range of wavelength (350-700 nm). The optical energy gap for allowed direct transition we
... Show MoreThe structural properties of ternary chalcopyrite AgAlSe2 compound alloys and thin films that prepared by the thermal evaporation method at room temperature on glass substrate with a deposition rate (5±0.1) nm s-1 for different values of thickness (250,500 and 750±20) nm, have been studied, using X-ray diffraction technology. As well as, the optical properties of the prepared films have been investigated. The structural investigated shows that the alloy has polycrystalline structure of tetragonal type with preferential orientation (112), while the films have amorphous structure. Optical measurement shows that AgAlSe2 films have high absorption in the range of wavelength (350-700 nm). The optical energy gap for allowed direct
... Show More