The aim of this paper, study the effect of carbon nanotubes on the electrical properties of polyvinylchloride. Samples of polyvinylchloride carbon nanotubes composite prepared by using hot press technique. The weight percentages of carbon nanotubes are 0,5,10 and 20wt.%. Results showed that the D.C electrical conductivity increases with increasing of the weight percentages of carbon nanotubes. Also, the D.C electrical conductivity changed with increase temperature for different concentrations of carbon nanotubes. The activation energy of D.C electrical conductivity is decreased with increasing of carbon nanotubes concentration.
For criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design
... Show MoreFor criminal investigations, fingerprints remain the most reliable form of personal identification despite developments in other fields like DNA profiling. The objective of this work is to compare the performance of both commercial charcoal and activated carbon powder derived from the Alhagi plant to reveal latent fingerprints from different non-porous surfaces (cardboard, plain glass, aluminum foil sheet, China Dish, Plastic, and Switch). The effect of three variables on activated carbon production was investigated. These variables were the impregnation ratio (the weight ratio of KOH: dried raw material), the activation temperature, and the activation time. The effect factors were investigated using Central Composite Design (CCD) softwa
... Show MoreThe influence of different thickness (500, 1000, 1500, and 2000) nm on the electrical conductivity and Hall effect measurements have been investigated on the films of copper indium gallium selenide CuIn1-xGaxSe2 (CIGS) for x= 0.6.The films were produced using thermal evaporation technique on glass substrates at R.T from (CIGS) alloy. The electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated and calculated as function of thickness. All films contain two types of transport mechanisms of free carriers, and increases films thickness was fond to increase the electrical cAnductivity whereas the activation energy (Ea) would vary with films thickness. Hall Effect analysis resu
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40-bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30-dimethyl-[1,10-biphenyl]-4,40-diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed by op
... Show MoreThe synthesis, characterization and liquid crystalline properties of N4,N40 -bis((1 H-benzo[d]imidazol-2- yl)methyl)-3,30 -dimethyl-[1,10 -biphenyl]-4,40 -diamine and of their corresponding Mn(II), Fe(II), Ni (II), Cu(II), and Zn(II) complexes are described. The ligand and complexes have been characterized by elemental analysis, magnetic susceptibility measurements (meff), conductometric measurements and Fourier Transform Infrared (FTIR), Nuclear Magnetic Resonance (1 H NMR), (13C-NMR) and UV–Vis spectroscopy. Spectral investigations suggested octahedral coordination geometrical arrangement for M(II) complexes. The phase transition temperatures were detected by differential scanning calorimetry (DSC) analysis and the phases are confirmed
... Show MoreThis research explores the use of solid polymer electrolytes (SPEs) as a conductive medium for sodium ions in sodium‐ion batteries, presenting a possible alternative to traditional lithium‐ion battery technology. The researchers prepare SPEs with varying molecular weight ratios of polyacrylonitrile (PAN) and sodium tetrafluoroborate (NaBF4) using a solution casting method with dimethyl formamide as the solvent. Through optical absorbance measurements, we identified the PAN:NaBF4 (80:20) SPE composition as having the lowest energy band gap value (4.48 eV). This composition also exhibits high thermal stability based on thermogravimetric analysis results.
In contrast to the classical antibacterial sulfa drugs that are unsubstituted or monosubstituted, our newly synthesized analogs were designed to obtain sulfonamide moiety containing disubstituted hetero nitrogen atom. These compounds were formed successfully by chlorosulfonation of acetanilide and the product was treated with different cyclic amines and finally amide hydrolysis was necessary to get agents that were analyzed for IR, UV, CHN, melting points and solubility. At last, we studied their antibacterial activity on certain types of bacteria and we noticed the inactivity due to possible steric factor. Principly, this means these products have no inhibiting action against the used microbes.