Effect of copper doping and thermal annealing on the structural and optical properties of Zn0.5Cd0.5S thin films prepared by chemical spray pyrolysis have been studied. Depositions were done at 250°C on glass substrate. The structural properties and surface morphology of deposited films were studied using X-ray diffraction (XRD) and photomicroscope (PHM) techniques. XRD studies reveal that all films are crystalline tetragonal structure. The film crystallinity are increased with 1% Cu-doping concentration and also increased for the films annealed at 300°C than the other studied cases. The lattice constant 'a' and 'c' varies with doping concentrations from 5.487Å to 5.427Å and 10.871Å to 10.757Å respectively. The grain size attained maximum value of 24 nm. Films thicknesses results were between 1 and 2 μm. The optical characteristics of the prepared thin films have been investigated by UV-VIS spectrophotometer in a wavelength ranging (300-1100) nm. The energy band gap of the films decreased linearly with increase of Cu-doping concentration and annealing temperature which varied from 2.4 eV to 2.48 eV.
Poly vinyl alcohol has been studied for its ability to form crystallites by using annealing method. Semicrystalline films of poly vinyl alcohol (PVA) were prepared by casting 11.5 wt. % and 13 wt. % PVA aqueous solution onto glass slides at annealing temperature range 90 -120°C and duration time 15- 60 minute. This allowed the macromolecules to form crystallites, small regions of folded and compacted chains separated by amorphous regions where single PVA chain may pass through several of these crystallites. Degree of crystallinity of PVA films (hydrogels) was determined by method of density; on the other hand the swelling behavior was conducted by the determination of water uptake, wet degree of crystallinity, gel fraction and solubilit
... Show MoreIn this research study the effect of fish in alternating electrical properties at room temperature copper oxide membranes and fish prepared in a manner different thermal spraying chemical on a thin glass bases and heated
Optical fiber technology is without a doubt one of the most significant phases of the communications revolution and is crucial to our daily lives. Using the free version (2022) of RP Fiber Calculator, the modal properties for optical fibers with core radii (1.5−7.5) μm, core index (1.44−1.48) and cladding index (1.43−1.47) have been determined at a wavelength of 1000 nm. When the fiber core’s radius is larger than its operating wavelength, multimode fibers can be created. The result is a single-mode fiber in all other cases. All of the calculated properties, it has been shown, increase with increasing core radius. The modes’ intensity profiles were displayed.
The various properties of the ground and excited electronic states of coumarins 102 using density functional theory (DFT) and time-dependent density functional theory (TDDFT) was calculated by the B3LYP density functional model with 6-31G(d,p) basis set by Gaussian 09 W program. Spectral characteristics of coumarin102 have been probed into by methods of experimental UV-visible, and quantum chemistry. The UV spectrum was measured in methanol. The optimized structures, total energies, electronic states (HOMO- LUMO), energy gap, ionization potentials, electron affinities, chemical potential, global hardness, softness, global electrophilictity, and dipole moment were measured. We find good agreement between experimental data of UV spectrum and
... Show MoreThe transition structure is considered as the most important hydraulic structure controlling the w/s transtion, morever it decrease the scouring of outlet structure.
seven experiment samples for transition structure was used in this research at different angles ( 10° - 90° ).
It was shown that froud number has a clear effect on the depth of the scouring, morever the high discharge rates cause an increase of the ratio between the length of the scour and its depth.
In order to select the best flaring angle it was shown that the angle of 40° has the most discharge rate, least structure length and least angle scour depth, with the firmly of t
... Show MoreThis research aims to study the effect of heat on the efficiency of solar cells of neutrons ranging from card to these cells in the case of dark and light before and after irradiation using the neutron source as well as electrical properties have been studied
In this research, A thin film of Rhodamine B dye and TiO2 Nanoparticles doped in PMMA Polymer has been prepared by a casting method. The sample was spectrum absorption by UV-Vis. The nonlinear optical properties were measured by Z- scan technique using Nd:YAG laser with (1064 nm) wavelength. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) were estimated for the thin film for different energies of the laser, n2 and β were decreased with increasing intensity of incident laser beam. Also, the type of β was two-photon absorption and n2 negative nonlinear reflective.
There is no doubt that optical fiber technology is one of the most important stages of the communications revolution at all and it is of utmost importance in our daily life. In this work, five fibers with core radii 2.5, 4.5 and 6.5–8.5 μm were designed. The properties of all guided modes have been calculated at a wavelength of 1550 nm by using RP Fiber Calculator. A single-mode fiber is obtained when the core radius approaches the wavelength. As the core radius is increased, the fiber becomes a multimode. The percentage power in the core increases with increasing core radius. The modes profiles were illustrated and compared with the modern references.