The electrical properties of CdO/porous Si/c-Si heterojunction prepared by deposition of CdO layer on porous silicon synthesized by electrochemical etching were studied. The structural, optical, and electrical properties of CdO (50:50) thin film prepared by rapid thermal oxidation were examined. X-ray diffraction (XRD) results confirmed formation of nanostructured silicon layer the full width half maximum (FWHM) was increased after etching. The dark J-V characteristics of the heterojunction showed strong dependence on etching current density and etching time. The ideality factor and saturation current of the heterojunction were calculated from J-V under forward bias. C-V measurements confirmed that the prepared heterojunctions are abrupt type .The value of built-in-potential as function of etching current density was estimated.
The CdSe pure films and doping with Cu (0.5, 1.5, 2.5, 4.0wt%) of thickness 0.9μm have been prepared by thermal evaporation technique on glass substrate. Annealing for all the prepared films have been achieved at 523K in vacuum to get good properties of the films. The effect of Cu concentration on some of the electrical properties such as D.C conductivity and Hall effect has been studied.
It has been found that the increase in Cu concentration caused increase in d.c conductivity for pure CdSe 3.75×10-4(Ω.cm)-1 at room temperatures to maximum value of 0.769(Ω.cm)-1 for 4wt%Cu.All films have shown two activation energies, where these value decreases with increasing doping ratio. The maximum value of activation energy was (0.319)eV f
This research focuses on the characteristics of polyvinyl alcohol and starch polymer blends doping with Rhodamine-B. The polymer blends were prepared using the solution cast method, which comprises 1:1(wt. /wt.). The polymer blends of PVA and starch with had different ratios of glycerin 0, 25, 30, 35, and 40 % wt. The ratio of 30% wt of glycerin was found to be the most suitable mechanical properties by strength and elasticity. The polymer blend of 1:1 wt ratios of starch/PVA and 30% wt of glycerin were doped with different ratios of Rhoda mine-B dye 0, 1, 2, 3, 4, 5, and 6% wt and the electrical properties of doping biodegradable blends were studied. The ratio of Rhodamine-B 5% wt to the polymer blends showed hi
... Show MoreIn this research study the effect of fish in alternating electrical properties at room temperature copper oxide membranes and fish prepared in a manner different thermal spraying chemical on a thin glass bases and heated
In this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal
... Show MoreIn this article, the casting method was used to prepare poly(methyl methacrylate)/hydroxyapatite (PMMA/HA) nanocomposite films incorporated with different contents (0.5, 1, and 1.5 wt%) of graphene nanoplatelets (Gnp). The chemical properties and surface morphology of the PMMA/HA blend and PMMA/HA/Gnp nanocomposite were characterized using FTIR, and SEM analysis. Besides, the thermal conductivity, dielectric and electrical properties at (1–107 Hz) of the PMMA/HA blend and PMMA/HA/Gnp composites were investigated. The structural analysis showed that the synthesized composites had a low agglomerated state, with multiple wrinkles of graphene flakes in the PMMA/HA blend. The thermal conductivity was improved by more than 35-fold its value for
... Show MoreThe properties of structural and optical of pure and doped nano titanium dioxide (TiO2) films, prepared using chemical spray pyrolysis (CPS) technique, with different nanosize nickel oxide (NiO) concentrations in the range (3-9)wt% have been studied. X-Ray diffraction (XRD) technique where using to analysis the structure properties of the prepared thin films. The results revealed that the structure properties of TiO2 have polycrystalline structure with anatase phase. The parameters, energy gap, extinction coefficient, refractive index, real and imaginary parts were studied using absorbance and transmittance measurements from a computerized ultraviolet visible spectrophotometer (Shimadzu UV-1601 PC) in the wavelength
... Show MoreDifferent thicknesseses of polycrystalline ZnTe films have been deposited on to glass substrates by vacuum evaporation technique under vacuum 2.1x10-5 mbar. The structural characteristics studied by X-ray diffraction (XRD) showed that the films are polycrystalline and have a cubic (zinc blende ) structure. The calculated microstructure parameters revealed that the crystallite size increases with increasing film thicknesses. The optical measurements on the deposited films were performed in different thicknesseses [ 400 , 450 and 500]nm, to determine the transmission spectrum and the absorption spectra as a function of incident wavelength. The optical absorption coefficient (α) of the films was determined from transmittance spectra in t
... Show MoreA thermal evaporation technique was used to prepare ZnO thin films. The samples were prepared with good quality onto a glass substrate and using Zn metal. The thickness varied from (100 to 300) ±10 nm. The structure and optical properties of the ZnO thin films were studied. The results of XRD spectra confirm that the thin films grown by this technique have hexagonal wurtzite, and also aproved that ZnO films have a polycrystalline structure. UV-Vis measurement, optical transmittance spectra, showed high transmission about 90% within visible and infrared range. The energy gap is found to be between 3.26 and 3.14e.V for 100 to 300 nm thickness respectivly. Atomic Force Microscope AFM (topographic image ) shows the grain size incre
... Show MoreZinc Oxide transparent thin films (ZnO) with different thickness from (220 to 420)nm
±15nm were prepared by thermal evaporation technique onto glass substrates at 200 with
the deposition rate of (10 2) nm sec
-1
, X-ray diffraction patterns confirm the proper phase
formation of the material. The investigation of (XRD) indicates that the (ZnO) film is
polycrystalline type of Hexagonal and the preferred orientation along (002) plane. The Optical
properties of ZnO were determined through the optical transmission method using ultraviolet-visible spectrophotometer with wavelength (300 – 1100) nm. The optical band gap values of
ZnO thin films were slightly increased from (2.9 - 3.1) eV as the film thickn
In this research Bi2S3 thin films have been prepared on glass substrates using chemical spray pyrolysis method at substrate temperature (300oC) and molarity (0.015) mol. Structural and optical properties of the thin films above have been studied; XRD analysis demonstrated that the Bi2S3 films are polycrystalline with (031) orientation and with Orthorhombic structure. The optical properties were studied using the spectral of the absorbance and transmission of films in wavelength ranging (300-1100) nm. The study showed that the films have high transmission within the range of the visible spectrum. Also absorption coefficient, extinction coefficient and the optical energy gap (Eg) was calculated, found that the film have direct ener
... Show More