In this research TiO2 nano-powder was prepared by a spray pyrolysis technique and then adds to the TiO2 powder with particle size (0.523 μm) in ratio (0, 5, 10, 15 at %) atomic percentage, and then deposition of the mixture on the stainless steel 316 L substrate in order to use in medical and industrial applications.
Structure properties including x-ray diffraction (XRD) and scanning electron microscope (SEM0, also some of mechanical properties and the effect of thermal annealing in different temperature have been studied. The results show that the particle size of a prepared nano-powder was 50 up to 75 nm from SEM, and the crystal structure of the powders (original and nano powder) was rutile with tetragonal cell. An improvement in all the properties after the addition of TiO2 nano –powder was take place.
Optical properties of Rhodamine-B thin film prepared by PLD
technique have been investigated. The absorption spectra using
1064nm and 532 nm laser wavelength of different laser pulse
energies shows that all the curves contain two bands, B band and Q
bands with two branches, Q1 and Q2 band and a small shift in the
peaks location toward the long wavelength with increasing laser
energy. FTIR patterns for Rhodamine-B powder and thin film within
shows that the identified peaks were located in the standard values
that done in the previous researches. X-ray diffraction patterns of
powder and prepared Rhodamine-B thin film was display that the
powder has polycrystalline of tetragonal structure, while the thin film
The present research investigates joints welding of 304L austenitic stainless steel using metal inert gas (MIG) welding method. The research explores the effect of process parameters (arc voltage, wire feed rate, and electrode wire diameter) on the mechanical properties of stainless steel. The above variables are varied respectively with 18.5, 19, 19.5 V, 116, 127, 137 mm/s, and 0.8, 1, 1.2 mm, with E308L as a filler electrode. The design matrix of the experiments was determined using the design of experiment (DOE) program Minitab 17 based on the levels of input elements used. The Taguchi orthogonal matrix methodology (Taguchi) technique was used to develop some empirical analysis for the maximum tensile strength and proper surface
... Show MoreUndoped and Al-doped CdO thin films have been prepared by vacuum thermal evaporation on glass substrate at room temperature for various Al doping ratios (0.5, 1 and 2)wt.% . The films are characterized by XRD and AFM surface morphology properties. XRD analysis showed that CdO:Al films are highly polycrystalline and exhibit cubic crystal structure of lattice constant averaged to 0.4696 nm with (111) preferred orientation. However, intensity of all peaks rapidly decreases which indicates that the crystallinity decreases with the increase of Al dopant. The grain size decreases with Al content (from 60.81 to 48.03 nm). SEM and AFM were applied to study the morphology an
... Show MorePolymer composites were prepared using epoxy resin (EP) and unsaturated polyester (UPE) as a blend matrices, which were mixed together in different percentages (starting from 90:10) of (epoxy/polyester) respectively, and ending with (50:50) of (epoxy/polyester). The optimum mixing ratio (OMR) of the components was decided upon the results of the impact strength value of these blending ratio, which showed the highest value of (16.3) KJ/m2 for the blending ratio (80:20) of (EP/UPE) respectively.
The blend with (OMR) was chosen to be reinforced with three different weight fractions of reinforcement; the 1st one was reinforced with nano titanium oxide (TiO2) with a weight fraction (2% wt.), the 2nd one was reinforced with both nano (TiO2)
This work involves the development of ceramic coating to steel surfaces (enamel).This enamel high quality consisted of two ceramic layers to ensure excellent bonding with the steel surfaces. The first is called the ground coat which proved bonding between the steel base and the second outer layer called the cover coat. Various concentrations of TiO2 were separately added to the mixture of the cover coat, resulting in to much better densification of the ceramic outer layer, the hardness, thermal shock resistances, and glossiness were improved also .Moreover this addition has raised the corrosion resistances of the ceramic in harsh acidic environment and at higher temperatures Also this enamel was used to protect the surfaces of steels whi
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreThe use of varied quantities of orphenadrine to protect stainless steel against corrosion in an acidic media at 298 K has been investigated. It was observed that when the drug's concentration is increased, the drug's speed of corrosion lowers. The data of inhibition efficiency (percent IE) in the presence of orphenadrine drug and corrosion resistance showed that the highest protection efficiency was achieved with the best concentration, and that the corrosion rate decreased with increasing orphenadrine drug concentrations, making it a good inhibitor for stainless steel in an acidic environment. The theoretical investigation proved the efficiency of the drug for inhibition, as the drug is absorbed on the surface of the stainless st
... Show MoreIn the present work we prepared heterojunction not homogenous CdS/:In/Cu2S) by spray and displacement methods on glass substrate , CdS:In films prepared by different impurities constration. Cu2S prepared by chemical displacement method to improve the junction properties , structural and optical properties of the deposited films was achieved . The study shows that the film polycrystalline by XRD result for all film and the energy gap was direct to 2.38 eV with no effect on this value by impurities at this constration .
This work investigates the structural, optical, and surface properties of ZnO thin films prepared by sol-gel method. The effect on waveguide sensor was examined at different irradiation durations of alpha particles. The X-ray diffraction (XRD) measurements revealed that the crystalline phase of ZnO thin films does not change after irradiation and showed a hexagonal structure of wurtzite type with an orientation toward (002). Moreover, ZnO thin films absorbance was increased with increasing irradiation time, whereas the transmittance was decreased. Additionally, increasing the irradiation time of alpha particles caused an increase in the extinction coefficient and the imaginary part, while the optical energy gap of the ZnO samples w
... Show More