Inelastic transverse and longitudinal form factors of same parity have
been studied for B 10 nucleus in the frame work of the shell model for
many particles, by using He 4 as an inert core and the remaining
particles were distributed in 3 / 2 1 / 2 1p ,1p which form the model
space. The calculations of the present work based on the harmonic
oscillator potential with fixed size parameter (b). Here we use the
first order correction for the perturbation theory and the interaction
from Cohen-Kurath (CK). Adding the core-polarization effects to
form factors calculations gave a good agreement with the
experimental data. Calculations have been performed for the
transverse excited states of: (1 ,0 )at ( E 0.178MeV ) ,.
(2 ,0)at(E 3.587MeV), (3 ,0)at(E 4.774MeV),
and
longitudinal ( 2 ,1)at( E 5.164MeV ) .
Formulations based on nanomaterials have the ability to reduce the consuming of hazardous pesticides and theirimpact on human health and environment. The present study focused on a comparative investigation of histological effects of nanocapule acetamiprid (NACMP) in vivoand commercial parental bulk form of acetamiprid (ACMP) on albino mice. Nanoformulations of pesticides have the potential to improve food productivity without compromising with the ecosystem. In the present study, nanocapsules containing acetamiprid were prepared from two natural macromolecules, alginate and chitosan. The characterization of the nanocapsules were investigated by Dynamic Light Scattering(DLS), T ransmission Electron Microscopy (TEM) and Atomic force
... Show MoreThe inelastic longitudinal electron scattering form factors are calculated for the low-lying excited states of 7Li {the first excited state 2121TJ (0.478 MeV) and the second excited state 2127TJ (4.63 MeV)}. The exact value of the center of mass correction in the translation invariant shell model (TISM) has been included and gives good results. A higher 2p-shell configuration enhances the form factors for high q-values and resolves many discrepancies with the experiments. The data are well described when the core polarization (CP) effects are included through effective nucleon charge. The results are compared with other theoretical models.
Keyword: 7Li inelastic electron scattering form factors calculated with exact
Shell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
Nuclear structure of 29-34Mg isotopes toward neutron dripline have been investigated using shell model with Skyrme-Hartree–Fock calculations. In particular nuclear densities for proton, neutron, mass and charge densities with their corresponding rms radii, neutron skin thicknesses and inelastic electron scattering form factors are calculated for positive low-lying states. The deduced results are discussed for the transverse form factor and compared with the available experimental data. It has been confirmed that the combining shell model with Hartree-Fock mean field method with Skyrme interaction can accommodate very well the nuclear excitation properties and can reach a highly descriptive and predictive power when investiga
... Show MoreThe ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c
... Show MoreThe surface finish of the machining part is the mostly important characteristics of products quality and its indispensable customers’ requirement. Taguchi robust parameters designs for optimizing for surface finish in turning of 7025 AL-Alloy using carbide cutting tool has been utilized in this paper. Three machining variables namely; the machining speeds (1600, 1900, and 2200) rpm, depth of cut (0.25, 0.50, 0.75) mm and the feed rates (0.12, 0.18, 0.24) mm/min utilized in the experiments. The other variables were considered as constants. The mean surface finish was utilized as a measuring of surface quality. The results clarified that increasing the speeds reduce the surface roughness, while it rises with increasing the depths and fee
... Show MoreThe nucleon momentum distributions (NMD) for the ground state and elastic electron scattering form factors have been calculated in the framework of the coherent fluctuation model and expressed in terms of the weight function (fluctuation function). The weight function has been related to the nucleon density distributions of nuclei and determined from theory and experiment. The nucleon density distributions (NDD) is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of long-tail behavior at high momentum region of the NMD has been obtained using both the theoretical and experimental weight functions. The observed ele
... Show MoreThe ground charge density distributions (CDD), elastic charge form factors and proton, charge, neutron, and matter root mean square (rms) radii for stable 40Ca and 48Ca have been calculated using single-particle radial wave functions of Woods-Saxon (WS) and harmonic-oscillator (HO) potentials. Different central potential depths are used for each subshell which is adjusted so as to reproduce the experimental single-nucleon binding energies. An excellent agreement between the calculated rms charge radii and experimental data are found for both nuclei using WS and HO potentials. The calculated proton rms radii for 40Ca are found to be in good agreement with experiment data using both WS and HO potentials while the results for 48Ca showed an ov
... Show MoreAn effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu