The charge density distributions (CDD) and the elastic electron
scattering form factors F(q) of the ground state for some even mass
nuclei in the 2s 1d shell ( Ne Mg Si 20 24 28 , , and S 32 ) nuclei have
been calculated based on the use of occupation numbers of the states
and the single particle wave functions of the harmonic oscillator
potential with size parameters chosen to reproduce the observed root
mean square charge radii for all considered nuclei. It is found that
introducing additional parameters, namely 1 , and , 2 which
reflect the difference of the occupation numbers of the states from
the prediction of the simple shell model leads to a remarkable
agreement between the calculated and experimental results of the
charge density distributions throughout the whole range of r.The
experimental electron scattering form factors for Ne Mg Si 20 24 28 , ,
and S 32 nuclei are in reasonable agreement with the present
calculations throughout all values of momentum transfer q .
The proton momentum distributions (PMD) and the elastic
electron scattering form factors F(q) of the ground state for some
even mass nuclei in the 2p-1f shell for 70Ge, 72Ge, 74Ge and 76Ge are
calculated by using the Coherent Density Fluctuation Model (CDFM)
and expressed in terms of the fluctuation function (weight function)
|F(x)|2. The fluctuation function has been related to the charge
density distribution (CDD) of the nuclei and determined from the
theory and experiment. The property of the long-tail behavior at high
momentum region of the proton momentum distribution has been
obtained by both the theoretical and experimental fluctuation
functions. The calculated form factors F (q) of all nuclei under s
Elastic magnetic electron scattering form factors in Ca-41 have been investigated. 1f7/2 subshell has been adopted as a model space with one neutron, and Millinar, Baymann and Zamick 1f7/2 model space effective interaction (F7MBZ) has been used as a model space effective interaction to generate the model space vectors for the M1, M3, M5, M7, and total form factors. Discarded space (core and higher configuration orbits) have been included through the first order perturbation theory to couple the partice-hole pair of excitation with 2ћω excitation energy in the calculation of the form factors and regarding the realistic interaction density dependence M3Y as a core polarization interaction with five sets of modern fitting parameters. Fina
... Show MoreShell model and Hartree-Fock calculations have been adopted to study the elastic and inelastic electron scattering form factors for 25Mg nucleus. The wave functions for this nucleus have been utilized from the shell model using USDA two-body effective interaction for this nucleus with the sd shell model space. On the other hand, the SkXcsb Skyrme parameterization has been used within the Hartree-Fock method to get the single-particle potential which is used to calculate the single-particle matrix elements. The calculated form factors have been compared with available experimental data.
Ground state energies and other properties of 2S shell for some atoms as Be(Z=4), B(Z=5), C(Z=6) and N(Z=7) were calculated by using Hartree-Fock wave function. We found the values of potential energies in hartree unit (3.8369, 6.78565, 10.18852 and 14.41089) respectively and the other proprieties like expectation values of the position < r1m > were in agreement with the published results. All the studied atomic properties were normalized.
The nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for some 1f-2p-shell nuclei, such as 58Ni, 60Ni, 62Ni, and 64Ni
isotopes have been calculated in the framework of the coherent fluctuation model (CFM) and expressed in terms of the weight function lf(x)l2 . The weight function (fluctuation function) has been related to the nucleon density distribution (NDD) of the nuclei and determined from the theory and experiment. The NDD is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of the l
In the present work, the nuclear shell model with Hartree–Fock (HF) calculations have been used to investigate the nuclear structure of 24Mg nucleus. Particularly, elastic and inelastic electron scattering form factors and transition probabilities have been calculated for low-lying positive and negative states. The sd and sdpf shell model spaces have been used to calculate the one-body density matrix elements (OBDM) for positive and negative parity states respectively. Skyrme-Hartree-Fock (SHF) with different parameterizations has been tested with shell model calculation as a single particle potential for reproducing the experimental data along with a harmonic oscillator (HO) and Woods-Saxo
... Show MoreThe wave functions of converted harmonic-oscillator in local scaling transformations are employed to evaluate charge distributions and elastic charge electron scattering form structures for 6,7Li, 9Be, 14,15N and 16O nuclei. The nuclear shell-model was fulfilled using Warburton-Brown psd-shell (WBP) interaction with truncation in model space. Very good agreements with the experimental data were obtained for the aforementioned quantities.
The nuclear shell model was used to investigate the bulk properties of lithium isotopes (6,7,8,9,11Li), i.e., the ground state density distributions and C0 and C2 components of charge form factors. The theoretical treatment was based on supposing that the Harmonic-oscillator (HO) potential governs the core nucleons while the valence nucleon(s) move through Hulthen potential. Such assumptions were applied for both stable and exotic lithium isotopes. The HO size parameters ( and ), the core radii ( ) and the attenuation parameters ( and ) were fixed to recreate the available empirical size radii for lithium isotopes under study.
The ground-state properties of exotic 18N and 20F nuclei, including the neutron, proton and matter densities and related radii are investigated using the two-body model of within Gaussian (GS) and Woods Saxon (WS) wave functions. The long tail is evident in the computed neutron and matter densities of these nuclei. The plane wave Born approximation (PWBA) is calculate the elastic form factors of these exotic nuclei. The variation in the proton density distributions due to the presence of the extra neutrons in 18N and 20F leads to a major difference between the elastic form factors of these exotic nuclei and their stable isotopes 14N and 19F. The reaction c
... Show More