The paper presents an overview of theoretical aspects of small radio telescope antenna parameters. The basic parameters include antenna beamwidth, antenna gain, aperture efficiency, and antenna temperature. These parameters should be carefully studied since they have vital effects on astronomical radio observations. The simulations of antenna parameters were carried out to assess the capability and the efficiency of small radio telescopes to observe a point source at a specific frequency. Two-dimensional numerical simulations of a uniform circular aperture antenna are implemented at different radii. The small diameter values are chosen to be varied between (1-10) m. This study focuses on a small radio telescope with a diameter of 3 m since this telescope is very common in the world. The simulated results of this study illustrated that the power pattern of a 3 m antenna has a half-power beamwidth of approximately 5 degrees. Also, the maximum peak antenna temperature is estimated to be more than 3000 K. All of these results were in good agreement with observations of the neutral hydrogen spectral line at the frequency of 1.42 GHz using a small radio telescope.