An oxidative polymerization approach was used to create polyaniline (PANI) and Fe2O3 /PANI nanoparticle combination. Various characterization approaches were used to investigate the structural, morphological, and Fe2O3 /PANI nanoparticle structures. The findings support the synthesis of polycrystalline nanoparticle PANI and Fe2O3 /PANI spherical nanoparticle composites. Gram-positive bacteria are tested for antibacterial activity. Various quantities of Nanoparticles of PANI and Fe2O3 /PANI nanoparticle composites were used to test Staph-aureus and gram-negative bacteria, E-coli, and candida species. PANI has antibacterial properties against all microorganisms tested. Fe2O3 /PANI nanoparticle composites, on the other hand, have higher antibacterial activity, as evidenced by the zone of inhibition. Bacterial inhibition zones are in S. aureus (positive), and E. coli are in good functioning order. With increasing concentrations of Fe2O3 /PANI nanoparticle composites, the inhibition zones of all bacteria are larger. Finally, the antimicrobial activity of Fe2O3 /PANI nanoparticle composite is characterized using a simplified mechanism based on electrostatic attraction. In this paper, a conductive polymer doped with iron nanoparticles was fabricated for the aim of testing it in the field of bacterial resistance.
Medicinal plants contain bioactive substances that are highly bioavailable in extracts or pure molecules, making them promising for therapeutic applications and precursors for chemo-pharmaceutical semi-synthesis. Harpagophytum procumbens (Devil’s Claw) is widely recognized as one of the most potent therapeutic herbs. This study aimed to extract seeds from H. procumbens using two types of solvents and to assess both qualitative and quantitative aspects of the extracts. The two extracts were evaluated for antibacterial and anti-biofilm activities using agar well diffusion assays against four bacterial isolates and two yeast isolates. Qualitative analysis identified the presence of alkaloids, flavonoids, tannins, saponins, and terpen
... Show MorePure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
Oro slippery tablets (OSTs) is a technique used to improve swallowing of tablets for patients with dysphagia. The aim of this study was to formulate irbesartan and hydrochlorothiazide as Oroslippery tablets (OST) containing 150 mg irbesartan and 25 mg hydrochlorothiazide for dysphagia patients. A simple and rapid method of analysis was developed and validated according to the ICH guideline using HPLC with UV detector. Tablets were prepared by direct compression and then coated with the slippery coat of three different concentrations of the slippering substance “xanthan gum’ (2%, 3% and 4%) in Opadry Colorcone® and evaluated according to USP. Slipperiness test was performed using Albino rabbits. Results showed that 2% xanthan gum gav
... Show MorePure and doped barium titanate with Mg2+ ion at two molar ratios x= (5%, 10%) mol. has been synthesized by solid state reaction technique. The powders sintered at two temperatures (1000 °C and 1400 °C). An XRD technique was used in order to study the crystal structure of pure and doped barium titanate, which confirmed the formation of the tetragonal phase of BaTiO3, and then calculate the lattice parameters of pure and doped barium titanate, the addition of magnesium ion Mg2+ can lead to decreases lattice parameters.
In this current work, Purpose; to clearly the fundamental idea for constructing a design and
investigation of spur gear made of composite material its comes from the combination of (high
speeds, low noise, oil-les running, light weight, high strength, and more load capability)
encountered in modern engineering applications of the gear drives, when the usual metallic gear
cannot too overwhelming these combinations.
An analyzing of stresses and deformation under static and dynamic loading for spur gear tooth
by finite element method with isoparametric eight-nodded in total of 200 brick element with 340
nods in three degree of freedom per node was selected for this analysis. This is responsible for the
catastropic fa
Background: Dental caries is one of the most significant problems in world health care. Restoring carious primary teeth is one of the major treatment goals for Children, and the light activated resin restoration materials like composite, resin-modified glass ionomer and polyacid-modified which was introduced in dentistry in 1970, widely used in clinical dentistry but its application increased dramatically in recent years because of its biocompatibility, color matching, good adhesive properties of its resemblance in physical and mechanical aspects to tooth. The aim of this study: To evaluate the microleakage of Polyacid-Modified Composite resin Compared to Flowable Hybrid Composite and Resin-Modified Glass ionomer cement. Materials and me
... Show MorePhenytoin selective electrodes were constructed based on penytoin-phosphotungstate (Ph-PT) complex with different plasticizers; di-butyl phosphate (DBP), tri-butyl phosphate (TBP), di-butyl phthalate (DBPH),and o-nitro phenyl octyl ether (NPOE) phthalate. The electrodes based on DBPH, ONPOE plasticizers gave Narnistain slope which are, 56.4 and 55.3mV/decade with detection limit of 1.9x10-5 M , 1.8x10-5 and concentration range 10-1 to 10-4 M and pH range 3.0 – 8.0. The electrodes based on TBP and DBP showed non-Nernistain slopes, 40.2,40.5 mV/decade for both plasticizers. Interfering of some cations was investigated and shows no interfering with electrodes response. Potentiometric methods were used for measuring phenytion in
... Show MoreA transdermal drug delivery system (TDDS) is characterized by the application of medications onto the skin's surface to deliver drugs at a controlled and predefined rate through the skin. Spanlastics, an elastic nanovesicle capable of transporting various pharmacological substances, shows promise as a drug delivery carrier. It offers numerous advantages over traditional vesicular systems applied topically, including enhanced stability, flexibility in penetration, and improved targeting capabilities. This study aims to develop meloxicam (MX)-loaded spanlastics gel as skin delivery carriers and to look into the effects of formulation factors like Tween80, Brij 35, and carbopol concentration on the properties of spanlastics gel, like pH, drug
... Show MoreThe purpose of this study was to develop poloxamer-based in-situ gel of chloramphenicol aiming to increase bioavailability and prolong corneal contact time, controlling drug release, and enhancing ocular bioavailability. The in-situ gel was prepared using different concentrations of poloxamer 407 combined with hydroxypropyl methyl cellulose (HPMC) or carbapol 940 to achieve gelation temperature about physiological temperature and improve rheological behavior and gelling properties of poloxamer gel. The prepared formulations were evaluated for their appearance, pH, and sol-gel transition temperature. The formulations F2, F3, and F5 have a gelation temperature within the accepted range 35-370C an
... Show More
