The ground state proton, neutron, and matter density distributions and corresponding root-mean-square radii (rms) of the unstable neutron-rich
22C exotic nucleus are investigated by two-frequency shell model (TFSM) approach. The single-particle wave functions of harmonic-oscillator (HO)
potential are used with two oscillator parameters bcore and bhalo. According to this model, the core nucleons of 20C are assumed to move in the model
space of spsdpf. Shell model calculations are performed with (0+2)hw truncations using Warburton-Brown psd-shell (WBP) interaction. The outer (halo) two neutrons in 22C are assumed to move in HASP (H. Hasper) model space (2s1/2, 1d3/2, 2p3/2, and 1f7/2 orbits) using the HASP interaction. The halo structure of 22C is confirmed with 2s1/2-dominant
configuration. Elastic electron scattering form factors of 22C nucleus are also investigated using the plane wave Born approximation. The effect of the long tail behavior (found in the calculated matter density distribution) on the elastic form factor of 22C is studied. The calculated matter densities and form factors of stable 14C and unstable 22C are compared. It
is found that the difference between the nucleon form factors of 22C and 14C nuclei is attributed to the difference presented in the matter densities of these nuclei. Hence the difference in the matter densities of 22C and 14C nuclei mainly comes from the neutron skin of the core 20C and from the difference in the neutron density distribution of the last two neutrons in
both 14C and 22C nuclei. It is concluded that elastic electron scattering from exotic nuclei can provide predictions for the near future experiments on the electron-radioactive beam colliders, where the effect of the neutron halo or skin on the charge distributions is planned to be studied.
In this work, the electrostatic probe was utilized to estimate the density of electrons for plasma generated around reentry vehicles that have a geometrically blunt nose at high-altitude. The thermocouple uses to measured electron temperature, which is equal to the temperature of the gas, on board the MAC spacecraft. In the spacecraft backflow field, electrostatic probe measurements were taken at five separate regions 1 to 5 cm from the body of the spacecraft. Over an altitude range of 90 to 50 km with an electron density of 108 to 1012 1/cm3, respectively. The measured electron temperature ranged from 0.05 to 0.9 electron volts and the maximum re-entry velocity of the spacecraft was about 7048 m
... Show MoreThe electron correlation for inter-shells (1s 2p), (1s 3p) and (1s 3d) was described by the inter-particle radial distribution function f(r12). It was evaluated for Li-atom in the different excited states (1s2 2p), (1s2 3p) and (1s2 3d) using Hartree-Fock approximation (HF). The inter particle expectation values for these shells were also evaluated. The calculations were performed using Mathcad 14 program.
A signature is a special identifier that confirms a person's identity and distinguishes him or her from others. The main goal of this paper is to present a deep study of the spatial density distribution method and the effect of a mass-based segmentation algorithm on its performance while it is being used to recognize handwritten signatures in an offline mode. The methodology of the algorithm is based on dividing the image of the signature into tiles that reflect the shape and geometry of the signature, and then extracting five spatial features from each of these tiles. Features include the mass of each tile, the relative mean, and the relative standard deviation for the vertical and horizontal projections of that tile. In the clas
... Show MoreIn this paper, the single scatter model for gamma backscatter densitometer has been used to investigate the materials of Halley’s nucleus. Monte Carlo simulation tool is used for the evaluation and calibration of gamma backscatter densitometer; and also used to calculate the bulk density. A set of parameters effecting detected count rate of γ – ray backscattering, mainly the source energy, the source – detector separation (sonde length), density and composition, were calculated.
Results obtained with the present method are compared with experimental data and the computed data may be considered entirely satisfactory.
The shell model calculations with Cohen-Kurath (C-K) interaction were carried out to investigate form factors of elastic transverse electron scattering, and magnetic dipole-moments of odd 7,9,11Be isotopes. The effect of the exact value of center of mass correction was adopted to generate the magnetic form factors in Born approximation picture. The contribution of the higher 2p-shell configuration was included to reproduce the experimental data. A significant improvement was obtained in the present results with core-polarization (CP) effect through the effective g-factors. The occupancies percentage with respect to the valence nucleons was also calculated.
Plasma generated by a 1064 nm pulsed Nd: YAG laser with pulse duration of 10 ns concentrated onto an Al solid target under vacuum pressure was examined spectroscopically. The temperature and electron density specifying the plasma were measured by time-resolved spectroscopy of neutral atom and ion line emissions in the time period range of 300–2000 ns. An echelle spectrograph is utilized to appear the plasma emission lines. The temperature was obtained using the spectral line comparison method and the electron density was calculated using the Stark Broadening (SB) method. The electron density was characterized as a function of laser pulse energy. The time range where the plasma is optically thin and is also in local thermodynamic equilibri
... Show MoreThe effects of short-range correlation on elastic Coulomb (charge) form factors, charge density distributions as well as root mean square charge radii of various nuclei (for instance, 46, 48, 50Ti, 52, 54Cr, 56, 58Fe, and 72, 74, 76Ge nuclei) are examined. The one- and two body terms of the cluster expansion together with the single-particle harmonic oscillator wave functions are utilized. For the purpose of embedding these effects into the formulae of charge density and form factor we employ the correlation function of Jastrow-type. These formulae depend upon the short-range correlation parameter (which instigates from the Jastr
... Show MoreThe Boltzmann transport equation is solved by using two- terms approximation for pure gases and mixtures. This method of solution is used to calculate the electron energy distribution function and electric transport parameters were evaluated in the range of E/N varying from . 172152110./510.VcmENVcm
The electron energy distribution function of CF4 gas is nearly Maxwellian at (1,2)Td, and when E/N increase the distribution function is non Maxwellian. Also, the mixtures are have different energy values depending on transport energy between electron and molecule through the collisions. Behavior of electrons transport parameters is nearly from the experimental results in references. The drift velocity of electron in carbon tetraflouride i
The study of Mars's ionosphere was made by investigating the measurements of the electron density (Ne) depending of the variation of the solar activities through different local time, different seasons, and different altitudes. The datasets has been taken from MARSIS on board the Mars Express spacecraft, the investigation for the solar indices and the electron density (Ne) have been made for two period of time depending on the strength of the geomagnetic storms, the first one was taken when the geomagnetic storms was low as in years (1998 & 2005), the data was chosen for three seasons of these years, Winter (December), Summer (June) and Spring (April). The second period was taken for the years (2001 & 2002) when the geomagnetic s
... Show More