The present work aims to fabricate n-i-p forward perovskite solar cell (PSC) withئ structure (FTO/ compact TiO2/ compact TiO2/ MAPbI3 Perovskite/ hole transport layer/ Au). P3HT, CuI and Spiro-OMeTAD were used as hole transport layers. A nano film of 25 nm gold layer was deposited once between the electron transport layer and the perovskite layer, then between the hole transport layer and the perovskite layer. The performance of the forward-perovskite solar cell was studied. Also, the role of each electron transport layer and the hole transport layer in the perovskite solar cell was presented. The structural, morphological and electrical properties were studied with X-ray diffractometer, field emission scanning electron microscope and current-voltage (J-V) characteristic curves, respectively. J-V curves revealed that the deposition of the Au layer between the electron transport layer (ETL) and Perovskite layer (PSK) reduced the power conversion efficiency (PCE) from 3% to 0.08% when one layer of C. TiO2 is deposited in the PSC and to 0.11% with two layers of C. TiO2. Power conversion efficiency, with CuI as the hole transport layer (HTL), showed an increase from 0.5% to 2.7% when Au layer was deposited between PSK and CuI layers. Also, Isc increased from 6.8 mA to 17.4 mA and Voc from 0.3 V to 0.5V. With depositing Au layer between P3HT and PSK layers, the results showed an increase in the efficiency from 1% to 2.6% and an increase in Isc from 10.7 mA to 30.5 mA, while Voc decreased from 0.75 V to 0.5V
The rate of gas induction was measured in gas-inducing type mechanically agitated contactors provided with two impellers. A reactor of 0.5 m i.d. was used with a working capacity of 60 liters of liquid. Tap water was used as the liquid phase, and air was used as the gas phase. The bioreactor mixing system consists of two equal diameter stirrers; the top impeller is shrouded-disk/curved-blade turbine with six evacuated bending blades, while the bottom impeller was disk turbine. The impeller speed was varied in the range of 50 to 800 rpm. The ratio of impeller diameter to tank diameter (D/T) and the submergence (S) of upper impeller from the top were varied. The effects of clearance of lower impeller from the tank bottom (C2) an
... Show MorePregnancy pose an additional burden on the body of the mother so as to meet their needs and the needs of the fetus and the body's need to iron increases excessively during pregnancy and iron is an essential element for the formation of hemoglobin blood Either hemoglobin is the key ingredient for red blood cells which carries oxygen to parts of the body, alas, most of the pregnant women begin their pregnancy inadequate stocks of iron in their bodies, which does not cover their need and requirement of the fetus, especially in the second and third trimesters of pregnancy When you reach the mother to the period in which they did not have the adequate amount of iron to produce hemoglobin become the mother was anemic So emerged the problem of
... Show MoreThe influence of Cr3+ doping on the ground state properties of SrTiO3 perovskite was evaluated using GGA-PBE approximation. Computational modeling results infered an agreement with the previously published literature. The modification of electronic structure and optical properties due to Cr3+ introducing into SrTiO3 were investigated. Structural parameters assumed that Cr3+ doping alters the electronic structures of SrTiO3 by shifting the conduction band through lower energies for the Sr and Ti sites. Besides, results showed that the band gap was reduced by approximately 50% when presenting one Cr3+ atom into the SrTiO3 system and particularly positioned at Sr sites. Interestingly, substituting Ti site by Cr3+ led to eliminating the band ga
... Show MoreThe transition structure is considered as the most important hydraulic structure controlling the w/s transtion, morever it decrease the scouring of outlet structure.
seven experiment samples for transition structure was used in this research at different angles ( 10° - 90° ).
It was shown that froud number has a clear effect on the depth of the scouring, morever the high discharge rates cause an increase of the ratio between the length of the scour and its depth.
In order to select the best flaring angle it was shown that the angle of 40° has the most discharge rate, least structure length and least angle scour depth, with the firmly of t
... Show More
... Show MoreA microbial desalination cell (MDC) is a new approach to bioelectrochemical systems. It provides a more sustainable way to electrical power production, saltwater desalination, and wastewater treatment at the same time. This study examined three operation modes of the MDC: chemical cathode, air cathode, and biocathode MDC, to give clear sight of this system's performance. The experimental work results for these three modes were recorded as power densities generation, saltwater desalination rates, and COD removal percentages. For the chemical cathode MDC, the power density was 96.8 mW/m2, the desalination rate was 84.08 ppm/hr, and the COD removal percentage was 95.94%. The air cathode MDC results were different
... Show MoreActivity test of the inhibitors purified from barley and broad beans crop proved the inhibition activity against 6 types of rots Pencillium ssp and Aspergellusflavus and Aspergillus niger and Fusarium solani and Fusarium semitectum and Mucor with three concentrations 0.1 and 0.2 and 0.3 mg/ml, where the inhibitor purified from the second peak of broad beans proved that it had a higher inhibition activity against the growth of test rots which were 53.75 and 62.5 and 78.5 and 76.25 and 84 and 18.8% respectively, at 0.3 mg/ ml followed by the first peak of the inhibitor purified from broad beans the inhibition activity were 43.75 and 50 and 62.96 and 75 and 80 and 12.5 then the inhibitor purified from barley in which the inhibition activity
... Show MoreVacuum evaporation technique was used to prepare pure and doped ZnS:Pb thin films at10% atomic weight of Pb element onto glass substrates at room temperature for 200 nm thickness. Effect of doping on a.c electrical properties such as, a.c conductivity, real, and imaginary parts of dielectric constant within frequency range (10 KHz - 10 MHz) are measured. The frequency dependence of a.c conductivity is matched with correlated barrier hoping especially at higher frequency. Effect of doping on behavior of a.c mechanism within temperature range 298-473 K was studied.