Nanostructure of chromium oxide (Cr2O3-NPs) with rhombohedral structure were successfully prepared by spray pyrolysis technique using Aqueous solution of Chromium (III) chloride CrCl3 as solution. The films were deposited on glass substrates heated to 450°C using X-ray diffraction (XRD) shows the nature of polycrystalline samples. The calculated lattice constant value for the grown Cr2O3 nanostructures is a = b = 4.959 Å & c = 13.594 Å and the average crystallize size (46.3-55.6) nm calculated from diffraction peaks, Spectral analysis revealed FTIR peak characteristic vibrations of Cr-O Extended and Two sharp peaks present at 630 and 578 cm-1 attributed to Cr-O “stretching modes”, are clear evidence of the presence of crystalline Cr2O3. The energy band gap (3.4 eV) for the chromium oxide nanostructures was measured using the UV-VIS-NIR Optical Spectrophotometer. It was found that by scanning electron microscopy (SEM) and image results, there is a large amount of nanostructure with an average crystal size of 46.3-55.6 nm, which indicates that our synthesis process is a successful method for preparing Cr2O3 nanoparticles.
Complexes of Au (III), Pd (II), Pt (IV ) and Rh(III) with S–propynyle-2- thiobenzimidazole (BENZA) have been prepared and characterized by IR and UV- Visible spectral methods in addition to magnetic and conductivity measurements and micro–elemental analysis (CHN).The probable structures of the new complexes have been suggested.
New series of metal ions complexes have been prepared from the new ligand [4-Amino-N-(5-methyl-isaxazol-3-yl)-benzenesulfonamide] derived from Sulfamethoxazole and 3-aminophenol. Accordingly, mono-nuclear Mn(II), Fe(III), Co (II), and Rh(III) complexes were prepared by the reaction of previous ligand with MnCl2.4H2O, CoCl2.6H2O, FeCl3.6H2O and RhCl3H2O, respectively. The compounds have been characterized by Fourier-transform infrared (FTIR), ultraviolet–visible (UV–vis), mass, 1H-, and 13C-nuclear magnetic resonance (NMR) spectra and thermo gravimetric analysis (TGA& DSC) curve, Bohr magnetic (B.M.), elemental microanal
... Show MoreThe aim of the work is the synthesis and characterization of the tridentate Schiff base (HL) containing (N and O) as donor atoms type (ONO). The ligand is: (HL) phenyl 2-(2-hydroxybenzylidenamino)benzoate . This ligand was prepared by the reaction of (phenyl 2-aminobenzoate) with salicylaldehyde under reflux in ethanol and few drops of glacial acetic acid which gave the ligand (HL). The prepared ligand was characterized by (FT IR,UV–Vis) spectroscopy, Elemental analysis of carbon, hydrogen and nitrogen (C.H.N.) and melting point. The ligand was reacted with some metal ions under reflux in ethanol with (1 metal :2 ligand )mole ratio which gave complexes of the general formula: [M(L)2]Cl , M = Cr III La III and , Pr III Products were found
... Show MoreA polycrystalline CdTefilms have been prepared by thermal evaporation technique on glass substrate at room temperature. The films thickness was about700±50 nm. Some of these films were annealed at 573 K for different duration times (60, 120 and 180 minutes), and other CdTe films followed by a layer of CdCl2 which has been deposited on them, and then the prepared CdTe films with CdCl2 layer have been annealed for the same conditions. The structures of CdTe films without and with CdCl2 layer have been investigated by X-ray diffraction. The as prepared and annealed films without and with CdCl2 layer were polycrystalline structure with preferred orientation at (111) plane. The better structural pr
... Show MoreIn this paper, we used two monomers, 3,3',4,4'-benzophenone tetracarboxylic dianhydride (BTDA) and m,m'-diaminobenzophenone (m, m’-DABP), to produce polyamide acid and then converted it to polyimide (PI). The effects of phosphoric acid (H3PO4) molarity (1, 2, and 3 M) on the structural, thermal, mechanical, and electrical characteristics of the polyimides/polyaniline (PI/PANI) nanocomposites were studied. Two sharp reflection peaks were developed by the addition of PANI to PI. When 3 M H3PO4 is added, the crystalline sharp peak loses some of its intensity. The complex formation of PI/PANI-H3PO4 was confi
... Show MoreAbstract Background: The daily usage of maxillofacial prostheses causes them to mechanically deteriorate with time. This study was aimed to evaluate the reinforcement of VST50F maxillofacial silicone by using yttrium oxide (Y2O3) nanoparticles (NPs) to resist aging and mechanical deterioration. Materials and Method: Y2O3 NPs (30–45nm) were loaded into VST50F maxillofacial silicone in two weight percentages (1 and 1.5 wt%), which were predetermined in a pilot study as the best rates for improving tear strength with minimum increase in hardness values. A total of 120 specimens were prepared and divided into the control and experimental groups (with 1 and 1.5 wt% Y2O3 addition). Each group included 40 specimens, 10 specimens for each paramet
... Show MoreIn this study we using zirconium sulfate, Punica granatum plant extract, and an alkaline medium, to created ZrO2 nanoparticles. They were then characterized using a variety of techniques, including FT-IR, UV-visible, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The Debye-Scherrer equation was used to calculate the crystal size in X-ray diffraction and found to be 27.82 nm. The particle size of ZrO2 nanoparticles was determined using atomic force microscopy, scanning electron microscopes, and transmission electron microscopy. Utilizing ZrO2 NPs, the metal ions M (II) = Co, Ni, and Cu were successfully a
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencies were 32.79%, 75
... Show MoreManganese sulfate and Punica granatum plant extract were used to create MnO2 nanoparticles, which were then characterized using techniques like Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, atomic force microscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The crystal's size was calculated to be 30.94nm by employing the Debye Scherrer equation in X-ray diffraction. MnO2 NPs were shown to be effective in adsorbing M(II) = Co, Ni, and Cu ions, proving that all three metal ions may be removed from water in one go. Ni(II) has a higher adsorption rate throughout the board. Co, Ni, and Cu ion removal efficiencie
... Show More