In this work, wide band range photo detector operating in UV, Visible and IR was fabricated using carbon nanotubes (MWCNTs, SWCNTs) decorated with silver nanoparticles (Ag NPs). Silicon was used as a substrate to deposited CNTs/Ag NPs by the drop casting technique. Polyamide nylon polymer was used to coat CNTs/Ag NPs to enhance the photo-response of the detector. The electro-exploding wire technology was used to synthesize Ag NPs. Good dispersion of silver NPs achieved by a simple chemistry process on the surface of CNTs. The optical, structure and electrical characteristic of CNTs decorated with Ag NPs were characterized by X-Ray diffraction and Field Emission Scanning Electron Microscopy. X-ray diffraction patterns of Ag NPs exhibited 2θ values (38.1°,44.3°) corresponding to the Ag nanocrystal, while the XRD pattern of MWCNTs and SWCNTs /Ag NPs peaks appeared at 2θ = 26.2° corresponding to the (002) and at 2theta=44° which corresponds with miller indices (100) for CNTs and (200) for Ag NPs. The optical properties measured by UV-Vis. Spectroscopy. Broad and strong surface plasmon resonance (SPR) peak was detected at 420 nm, for Ag NPs. The absorption of CNTs/Ag NPs increased significantly from UV to near IR region (300-1000 nm). Ag NPs decorated CNTs without any impurities, according to field mission scanning electron microscopy examination, with typical particle sizes of (50-80nm) for Ag-NPs, 44nm for MWCNTs/Ag-NPs, and 30nm for SWCNTs/Ag NPs. ֹThe I-V characteristics at forward bias voltage (0.5-10) volt were studied. The figure of merits (responsivity, photocurrent gain, NEP and detectivity) after coating with polymer of the detector were measured in the dark and after illumination with UV LED (365 nm), Tungsten lamp (500-800 nm) and Laser diode (808 nm).
In this study, the effect of fire flame on the punching shear strength of steel fiber reinforced concrete flat plates was experimentally investigated using nine half-scale specimens with dimensions of 1500×1500 mm and a total thickness of 100 mm. The main investigated variables comprised the steel fiber volume fraction 0, 1, and 1.5% and the burning steady state temperature 500 and 600 °C. The specimens were divided into three groups, each group consists of three specimens. The specimens in the first group were tested with no fire effect to be the reference specimens, while the others of the second and third groups were tested after being exposed to fire-flame effect. The adopted characteristics of the fire test were; (one hour) b
... Show MoreIn this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
This research is a continued efforts for a project on the fire tube boiler control for Al Rasheed edible oil factory. The aim is to enhance the control system with new integral control one. A functional blocks diagram (FBD) was built and simulated. With Schneider smart relays, FBD differs than ladder logic programming in which the PID option is active. An extensive work was done to understand the operation sequence, emergency shutdown, and faults causing the trips. A control program was designed to control logical sequence of operation. Furthermore temperature is controlled via cascade control with fuel and air controllers. The temperature controller output is send as remote set point to the fuel controller in a serial cascade manner. The f
... Show MoreNi-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the react
... Show MoreAcinetobacter baumannii is highly adapted to hospital environments, causing persistent chronic infections due to its ability to form biofilms. In this work, the antibiofilm activity of AuNPs with a subMIC concentration of 9.34 μg/ml was investigated by the microtiter plate method against 80 clinical isolates of A. baumannii. The results revealed that the biofilm was significantly (P< 0.05) reduced by 48.2 – 82.1%.
Microbial antibiotics resistance is considered a serious health issue in the Middle East and developing countries. In this study, the Fe2O3 nanoparticles was prepared chemically, and the particles size and shape were analyzed by using Scan electron microscope (SEM) and X-Ray diffraction (XRD). Different concentration of Fe2O3 nanoparticles were used and examined on E.coli and S. aureus. Using liquid dilution and in vitro cytotoxicity assay by microplate toxicity test (MTT). The microbial cell metabolic activity was measured on gram-negative, gram-positive bacteria and fungi after treating with different concentrations of Fe2O3 nanoparticl
... Show MoreGold nanoparticles AuNPs have proven to be powerful tools in various nanomedicine applications, because of their photo-optical distinctiveness and biocompatibility. Noble metal gold nanoparticles was prepared by pulsed laser ablation method (1064-Nd: YAG with various Laser power from 200 to 800 mJ and 1 Hz frequency) in distil water. The process was characterized using UV-VIS absorption spectroscopy. Morphology and average size of nanoparticles were estimated using AFM and X-ray diffraction (XRD) analysis which show the nature of gold nanoparticles (AuNPs). Antibacterial activity of gold nanoparticles as a function of particles concentration against gram negative bacterium Escherichia coli and gram positive bacterial Staphylococcus aureu
... Show MoreA process of bacterial cellulose gold nanocomposite has been investigated based on experimental work and cited literature. A literature review on the production process is carried out in this study. Bacterial cellulose is a high crystalline fabric material generally used in biomedical applications. A Nanocomposite was made by synthesis from gold and bacterial cellulose. The experimental work includes growing, and isolating bacterial cellulose, preparation of gold Nanoparticles and preparation of Nano composite. Nanoparticle’s formation and adsorption on the cellulose tissue have been observed visually, where a colour change was observed. The predicted particle size for the gold nano