In this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap for direct transitions was shown to be reduced by increasing laser energy within the range (4.29-3.7 eV).
Due to the remarkable progress in photovoltaic technology, enhancing efficiency and minimized the costs have emerged as global challenges for the solar industry. A crucial aspect of this advancement involves the creation of solar cell antireflection coating, which play a significant role in minimizing sunlight reflection on the cell surface. In this study, we report on the optimization of the characteristics of CeO2 films prepared by pulsed laser deposition through the variation of laser energy density. The deposited CeO2 nanostructure films have been used as an effective antireflection coating (ARC) and light-trapping morphology to improve the efficiency of silicon crystalline solar cell. The film’s thickness increases as laser fluence i
... Show MoreThis study was conducted for evaluating the cytotoxic effect of heat stable enterotoxin a (STa) produced by enterotoxigenic Escherichia coli on the proliferation of primary cancer cell cultures, obtained from tumor samples that were collected from (13) cancer patients and as follows: (five colon cancer patients, two bladder cancer patients, two breast cancer patients, two stomach cancer patients and two lung cancer patients), and on normal cell line (rat embryonic fibroblast / REF) (in vitro) with the use of different concentrations starting from (1) mg/ml and ending with (0.0002) mg/ml by making two fold serial dilutions by using the 96- well microtiter plate, and in comparison with negative (PBS) and positive (MMC, at concentration
... Show MoreBendable concrete, also known as Engineered Cementitious Composite (ECC) is a type of ultra-ductile cementitious composites reinforced with fibres to control the width of cracks. It has the ability to enhance concrete flexibility by withstanding strains of 3% and higher. The properties of bendable concrete mixes (compressive strength, flexural strength, and drying shrinkage) are here assessed after the incorporation of supplementary cementitious materials, silica fume, polymer fibres, and the use of ordinary Portland cement (O.P.C) and Portland limestone cement (IL). Mixes with Portland limestone cement show lower drying shrinkage and lower compressive and flexural strength than mixes with ordinary Portland cement, due to the ratio o
... Show MoreConventional concretes are almost unbending, and even a small amount of strain potential leaves them brittle. This lack of bendability is a major source of strain loss, and it has been the main goal behind the development of bendable concrete, often known with engineered ce ment composites, or ECC. This form of concrete has a lot more flexibility than regular concrete. Micromechanical polymer fibers are used to strengthen ECC. In most cases, ECC uses a 2% amount of thin, separated fibers. As a result, bendable concrete deforms but unlike traditional concrete, it does not crack. This study aims to include this kind of concrete, bendable concrete, which can be used to solve concrete problems. Karasta (CK) and Tasluja (CT) Portland Lime
... Show MoreObjective Neutrophils own an arsenal of dischargeable chemicals that enable them to handle bacterial challenges, manipulating innate immune response and actual participation in acquired immunity. The reactive oxygen species (ROS) are one of the most important chemicals that neutrophils discharge to eradicate pathogens. Despite their beneficial role, the ROS were strongly correlated to periodontal tissue destruction. Lowdensity neutrophils (LDN) have been recognized for producing enhanced quantities of ROS. However, the potential role of ROS produced by LDN in periodontitis is unknown. The aim of the study was to investigate the impact of ROS produced by LDN in periodontal diseases.
Background: Due to the complicated and time-consuming physiological procedure of bone healing, certain graft materials have been frequently used to enhance the reconstruction of the normal bone architecture. However, owing to the limitations of these graft materials, some pharmaceutical alternatives are considered instead. Chitosan is a biopolymer with many distinguishing characteristics that make it one of the best materials to be used as a drug delivery system for simvastatin. Simvastatin is a cholesterol lowering drug, and an influencer in bone formation process, because it stimulates osteoblasts differentiation, bone morphogenic protein 2, and vascular endothelial growth factor. Objectives: histological, histochemical and histomorp
... Show MoreStabilization of phenol trapped by agricultural waste: a study of the influence of ambient temperature on the adsorbed phenol
