In this work, (CdO)1-x (CoO)x thin films were prepared on glass slides by laser-induced plasma using Nd:YAG laser with (λ=1064 nm) and duration (9 ns) at different laser energies (200-500 mJ) with ratio (x=0.5), The influence of laser energy on structural and optical properties has been studied. XRD patterns show the films have a structure of polycrystalline wurtzite. As for AFM tests results for the topography of the surface of the film, where the results showed that the grain size and the average roughness increase with increasing laser energy. The optical properties of all films were also studied and the results showed that the absorption coefficient for within the wavelength range (280-1100 nm), The value of the optical power gap for direct transitions was shown to be reduced by increasing laser energy within the range (4.29-3.7 eV).
Copper tin sulfide (Cu2SnS3) thin films have been grown on glass
substrate with different thicknesses (500, 750 and 1000) nm by flash
thermal evaporation method after prepare its alloy from their
elements with high purity. The as-deposited films were annealed at
473 K for 1h. Compositional analysis was done using Energy
dispersive spectroscopy (EDS). The microstructure of CTS powder
examined by SEM and found that the large crystal grains are shown
clearly in images. XRD investigation revealed that the alloy was
polycrystalline nature and has cubic structure with preferred
orientation along (111) plane, while as deposited films of different
thickness have amorphous structure and converted to polycrystalline
In this report Silver doped Tin Sulfide (SnS) thin films with ratio of (0.03) were prepared using thermal evaporation with a vacuum of 4*10-6 mbar on glass with (400) nm thickness and the sample annealing with ( 573K ). The optical constants for the wavelengths in the range (300-900) nm and Hall effect for (SnS and SnS:3% Ag) films are investigated and calculated before and after annealing at 573 K. Transition metal doped SnS thin films the regular absorption 70% in the visible region, the doping level intensification the optical band gap values from 1.5- 2 eV. Silver doped tin sulfide (SnS) its direct optical band gap. Hall Effect results of (SnS and SnS:3% Ag) films show all films were (p-type) electrical conductivity with resistivity of
... Show MoreThis paper presents the effect of Cr doping on the optical and structural properties of TiO2 films synthesized by sol-gel and deposited by the dip- coating technique. The characteristics of pure and Cr-doped TiO2 were studied by absorption and X-ray diffraction measurement. The spectrum of UV absorption of TiO2 chromium concentrations indicates a red shift; therefore, the energy gap decreases with increased doping. The minimum value of energy gap (2.5 eV) is found at concentration of 4 %. XRD measurements show that the anatase phase is shown for all thin films. Surface morphology measurement by atomic force microscope (AFM) showed that the roughness of thin films decrease with doping and has a minimum value with 4 wt % doping ratio.
The characterization of ZnO and ZnO:In thin films were confirmed by spray pyrolysis technique. The films were deposited onto glass substrate at a temperature of 450°C. Optical absorption measurements were also studied by UV-VIS technique in the wavelength range 300-900 nm which was used to calculate the optical constants. The changes in dispersion and Urbach parameters were investigated as a function of In content. The optical energy gap was decreased and the wide band tails were increased in width from 616 to 844 eV as the In content increased from 0wt.% to 3wt.%. The single–oscillator parameters were determined also the change in dispersion was investigated before and after doping.
In this work, pure and doped Vanadium Pentoxide (V2O5) thin films with different concentration of TiO2 (0, 0.1, 0.3, 0.5) wt were obtained using Pulse laser deposition technique on amorphous glass substrate with thickness of (250)nm. The morphological, UV-Visible and Fourier Transform Infrared Spectroscopy (FT-IR) were studied. TiO2 doping into V2O5 matrix revealed an interesting morphological change from an array of high density pure V2O5 nanorods (~140 nm) to granular structure in TiO2-doped V2O5 thin film .Transform Infrared Spectro
... Show MoreCopper Zinc Sulphide (Cu0.5Zn0.5S) alloy and thin films were fabricated in a vacuum. Nano crystallized (CZS) film with thick 450±20 nm was deposit at substrates glasses using thermal evaporation technique below ~ 2 × 10− 5 mbar vacuum to investigated the films structural, morphological and optical properties depended on annealing temperatures ( as-deposited, 423, 523 and 623) K for one hour. The influences annealed temperature on structurally besides morphologically characteristics on these films were investigated using XRD and AFM respectively. XRD confirms the formation a mixed hexagonal phase of CuS-ZnS in (102) direction with polycrystalline in nature having very fine crystallites size varying from (5.5-13.09) nm. AFM analys
... Show MoreThe effect of annealing temperature (Ta) on the electrical properties like ,D.C electrical conductivity (σ DC), activation energy (Ea),A.C conductivity σa.c ,real and imaginary (ε1,ε2) of dielectric constants ,relaxation time (τ) has been measured of ZnS thin films (350 nm) in thickness which were prepared at room temperature (R.T) using thermal evaporation under vacuum . The results showed that σD.C increases while the activation energy values(Ea) decreases with increasing of annealing temperature.(Ta) from 303- 423 K .
The density of charge carriers (nH) and Hall mobility (μH) increases also with increasing of annealing temperature Hall effect measurements showed that ZnS films were n-type converted to p-type at high annealin
In this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.