In this work, chemical oxidation was used to polymerize conjugated polymer "Polypyrrole" at room temperature Graphene nanoparticles were added by in situ-polymerization to get (PPY-GN) nano. Optical and Electrical properties were studied for the nanocomposites. optical properties of the nanocomposites were studied by UV-Vis spectroscopy at wavelength range (200 -800 nm). The result showed optical absorption spectra were normally determined and the result showed that the maximum absorbance wave length at 280nm and 590nm. The optical energy gap has been evaluated by direct transition and the value has decreased from (2.1 eV for pure PPy) to (1.3 eV for 5 %wt. of GN). The optical constants such as the band tail width ΔE was evaluated, the value of ΔE for pure PPy was (0.0949eV) while for 5 wt. % of GN it was (0.5156 eV), It has been observed that the Urbach tail for pure PPy was smaller than that for PPy/GN nanocomposites and it increase as GN concentration increases. The A.C electrical conductivity at range of frequency (103Hz-106Hz) was increased by increasing the frequency and GN concentration about four order of magnitude. The s value was about (0.653-0.962) which means that the mechanism of conductivity is correlated hopping mechanism (C. H. P.). The dielectric constant and dielectric lose were determined and found to decrease with increasing frequency.
Longitudinal data is becoming increasingly common, especially in the medical and economic fields, and various methods have been analyzed and developed to analyze this type of data.
In this research, the focus was on compiling and analyzing this data, as cluster analysis plays an important role in identifying and grouping co-expressed subfiles over time and employing them on the nonparametric smoothing cubic B-spline model, which is characterized by providing continuous first and second derivatives, resulting in a smoother curve with fewer abrupt changes in slope. It is also more flexible and can pick up on more complex patterns and fluctuations in the data.
The longitudinal balanced data profile was compiled into subgroup
... Show MoreThe aim of this study was to investigate the effectiveness of binary solvent for regeneration of spent lubricating oil by extraction-flocculation process. The regeneration was investigated by bench scale experiments by using locally provided solvents (Heavy Naphtha, n-Butanol, and iso-Butanol). Solvents to used oil, mixing time, mixing speed and temperatures were studied as operating parameters. The performance on three estimated depended key parameters, namely the percentage of base oil recovered (Yield), percent of oil loss (POL), and the percent of sludge removal (PSR) were used to evaluate the efficiency of the employed binary solvent on extraction process. The best solvent to solvent ratio for binary system were 30:70 for Heavy Naph
... Show MoreTo observe the effect of media of the internal pressure on the equivalent stress distribution in the tube, an experimental study is done by constructing a testing rig to apply the hydraulic pressure and three dies are manufactured with different bulging configurations (square, cosine, and conical). In the other part, ANSYS APDL is generated to analyze the bulging process with hydraulic and rubber (natural and industrial) media. It was found that when the media is a rubber, the stress is decreased about 9.068% in case of cosine die and 5.4439% in case of conical die and 2.8544% in case of square die. So, it can be concluded that the internal pressure in the rubber media is much better than in hydraulic media. Also, the force needed for fo
... Show MoreInnovative laboratory research and fluid breakthroughs have improved carbonate matrix stimulation technology in the recent decade. Since oil and gas wells are stimulated often to increase output and maximum recovery, this has resulted in matrix acidizing is a less costly alternative to hydraulic fracturing; therefore, it is widely employed because of its low cost and the fact that it may restore damaged wells to their previous productivity and give extra production capacity. Limestone acidizing in the Mishrif reservoir has never been investigated; hence research revealed fresh insights into this process. Many reports have stated that the Ahdeb oil field's Mishrif reservoir has been unable to be stimulated due to high inj
... Show MoreIn this paper, wavelets were used to study the multivariate fractional Brownian motion through the deviations of the random process to find an efficient estimation of Hurst exponent. The results of simulations experiments were shown that the performance of the proposed estimator was efficient. The estimation process was made by taking advantage of the detail coefficients stationarity from the wavelet transform, as the variance of this coefficient showed the power-low behavior. We use two wavelet filters (Haar and db5) to manage minimizing the mean square error of the model.
In this paper, we propose a new and efficient ferroelectric nanostructure metal oxide lithium niobate [(Li1.075Nb0.625Ti0.45O3), (LNTO)] solid film as a saturable absorber (SA) for modulating passive Q-switched erbium-doped fiber laser (EDFL). The SA is fabricated as a nanocomposite solid film by the drop-casting process in which the LNTO is planted within polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] as host copolymer. The optical and physical characteristics of the solid film are experimentally established. The SA is incorporated within the cavity of EDFL to examine its capability for producing multi-wavelength laser. The experimental results proved that a multi-wavelength laser is produced, where stable four lines with central
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More