In this work, chemical oxidation was used to polymerize conjugated polymer "Polypyrrole" at room temperature Graphene nanoparticles were added by in situ-polymerization to get (PPY-GN) nano. Optical and Electrical properties were studied for the nanocomposites. optical properties of the nanocomposites were studied by UV-Vis spectroscopy at wavelength range (200 -800 nm). The result showed optical absorption spectra were normally determined and the result showed that the maximum absorbance wave length at 280nm and 590nm. The optical energy gap has been evaluated by direct transition and the value has decreased from (2.1 eV for pure PPy) to (1.3 eV for 5 %wt. of GN). The optical constants such as the band tail width ΔE was evaluated, the value of ΔE for pure PPy was (0.0949eV) while for 5 wt. % of GN it was (0.5156 eV), It has been observed that the Urbach tail for pure PPy was smaller than that for PPy/GN nanocomposites and it increase as GN concentration increases. The A.C electrical conductivity at range of frequency (103Hz-106Hz) was increased by increasing the frequency and GN concentration about four order of magnitude. The s value was about (0.653-0.962) which means that the mechanism of conductivity is correlated hopping mechanism (C. H. P.). The dielectric constant and dielectric lose were determined and found to decrease with increasing frequency.
The corona virus epidemic outbreak has urged an extreme worldwide effort for re‐purposing obtainable approved medications for its treatment. In this review, we're focusing on the chemicals properties andpharmacologicaleffectiveness of medicationsofsmallmolecule that are presently being evaluated in clinical trials for the management of corona virus (COVID‐19). The current review sheds light on a number of drugs that have been diagnosed to treat COVID‐19 and their biological effects.
The mechanical properties of fiber-reinforced-polymer (FRP)
composites are dependent on the type amount, and orientation of fiber that is selected for a particular service. There are many commercially available reinforcement forms to meet the design requirements of the user. The ability of failure in the fiber architecture allows for optimized performance of a product that saves both weight and cost ( 12).
A modem technology is adopted to produce fibers (glass, kevelar,
and carbon) reinforced composite by using unsaturated polyester, where different volume fraction of these fibers are used (0, 0.2, 0.4, 0.6, 0.8, I)
reinfor
... Show MoreIn this research thin films from SnO2 semiconductor have been prepared by using chemical pyrolysis spray method from solution SnCl2.2H2O at 0.125M concentration on glass at substrate temperature (723K ).Annealing was preformed for prepared thin film at (823K) temperature. The structural and sensing properties of SnO2 thin films for CO2 gas was studied before and after annealing ,as well as we studied the effect temperature annealing on grain size for prepared thin films .
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can b
... Show MoreThe existing investigation explains the consequence of irradiation of violet laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous violet laser (405 nm) with power (1W) for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 min
This study presents the design of flash-lamps for pumped solid-state lasers. In this research have been study some of characters for flash lamp. The optimum pressure operation is found using different flash lamps about (600-4000) mbar. In conclusion, it was shown that the increase in pressure due to improve efficiency of radiation and decrease of temperature. Also this study illustrated the reason of decrease temperature is atomic number and due to increase of radiation efficiency.
the structrual and mechanical properties of thin Ni films of different thicknesses deposited on coring glass substrate using lonbeam sputtering(IBS) technique under vacuum torr have been studied the TEM and electron
This search study the effect of particle size of graphite on the mechanical and thermal properties of epoxy composites, where graphite adopted with particle sizes (45,53,75) ?m, respectively, and the percentages by weight (0,1,3,5,7,9)% for each size of this three particle sizes.Mechanical properties represented by the bending (three-point bending) and through which the conclusion is bending stress and modulus of elasticity, thermal properties were either through thermal conductivity tests.The results showed that the ratio(1%) is the maximum value of bending stress at the three particle size and the (45 ?m) is the maximum.Thermal conductivity result show is the maximum value at ratio (1%) of particle size(53 ?m)
Nanoferrite materials have been synthesized by sol-gel auto combustion method. The effect of doping different percentages of Y2O3 (0.34 µm) on the physical and mechanical properties of selected mixed ferrite [(Li2.5Fe0.5) 0.9(Co4Fe2O4) 0.1] by adding 10% Cobalt ferrite was studied. Physical properties (i.e. .density, porosity and water absorption) were affected by the doping, where the density increased about 32% at 6 wt% Y2O3, while porosity has a drastically decreased about 80% at 6% Y2O3 and has a correlation effect on the mechanical properties(Splitting tensile strength and Vicker
... Show More