This work is divided into two parts first part study electronic structure and vibration properties of the Iobenguane material that is used in CT scan imaging. Iobenguane, or MIBG, is an aralkylguanidine analog of the adrenergic neurotransmitter norepinephrine and a radiopharmaceutical. It acts as a blocking agent for adrenergic neurons. When radiolabeled, it can be used in nuclear medicinal diagnostic techniques as well as in neuroendocrine antineoplastic treatments. The aim of this work is to provide general information about Iobenguane that can be used to obtain results to diagnose the diseases. The second part study image processing techniques, the CT scan image is transformed to frequency domain using the LWT. Two methods of contrast enhancement of medical images Histogram Equalization and Adaptive Histogram Equalization used to improvement images properties. Canny edge detection operator used as a comparison tool between enhancement methods. The result show the absorbance of iobengaune in the range (1000 – 0 cm-1) of these single bonds from C-C, C-N, C-I, and C-O High absorbency and sharp peak of Maximum wavelength absorbed (640.66 nm) and the biggest energy (1.9353 eV). And half width is (0.333 eV) at half height is (2685.83cm-1). Electrostatic potential, electron deficiency were especially marked in rings benzene compounds exclusively of carbon and hydrogen atoms (focusing on areas of carbon), establishing this area as more electropositive. From the results of measures many functions like signal to noise ratio, mean, entropy and histogram of image, CT Scan images are best enhanced obtained using AHE technique in frequency. The dark regions of enhanced CT Scan images became clarity for input CT Scan image that having low contrast.
Compounds from ZnO doped with AgO in different ratio (0,3,5,7, and 9)wt.% were prepared.Thin films from the prepared compounds were deposited on a glass substrate using the pulsed laser deposition method. The XRD pattern confirmed the presence of a single-phase hexagonal wurtzite ZnO structure, without the presence of a secondary phase. AFM measurements showed an increase in both average grain size and average surface roughness with increasing concentration content of (AgO).The crystallite size of ZnO of the main peak corresponding to the preferred plane of crystal growth named (100) increases from 17.8 to 22.5nm by increasing of AgO doping ratio from 0 to 9%. The absorbance and transmittance in the wavelength range (350-1100 nm) were
... Show MoreImage combination is a technique that fuses two or more medical images taken with different conditions or imaging devices into a single image contain complete information. In this study relied on mathematical, statistical and spatial techniques, to fuse MRI images that captured horizontal and vertical times (T1, T2), and applied a method of supervised classification based on the minimum distance before and after combination process, then examine the quality of the resulting image based on the statistical standards resulting from the analysis of edge analysis, showing the results to identify the best techniques adopted in combination process, determine the exact details in each class and between classes.
Ultrasound imaging has some problems with image properties output. These affects the specialist decision. Ultrasound noise type is the speckle noise which has a grainy pattern depending on the signal. There are two parts of this study. The first part is the enhancing of images with adaptive Weiner, Lee, Gamma and Frost filters with 3x3, 5x5, and 7x7 sliding windows. The evaluated process was achieved using signal to noise ratio (SNR), peak signal to noise ratio (PSNR), mean square error (MSE), and maximum difference (MD) criteria. The second part consists of simulating noise in a standard image (Lina image) by adding different percentage of speckle noise from 0.01 to 0.06. The supervised classification based minimum di
... Show MoreBixSb2-xTe3 alloys with different ratios of Bi (x=0, 0.1, 0.3, 0.5, and 2) have been prepared, Thin films of these alloys were prepared using thermal evaporation method under vacuum of 10-5 Torr on glass substrates at room temperature with different deposition rate (0.16, 0.5, 0.83) nm/sec for thickness (100, 300, 500) respectively. The X–ray diffraction measurements for BixSb2-xTe3 bulk and thin films indicate the polycrystalline structure with a strong intensity of peak of plane (015) preferred orientation with additional peaks, (0015) and (1010 ) reflections planes, which is meaning that all films present a very good texture along the (015) plane axis at different intensities for each thin film for different thickness. AFM measureme
... Show MoreBackground: To elucidate distinctive CT imaging features that allows a diagnosis of hepatic hydatidosis.
Patients and methods : The computed tomographic (CT) findings of 58 patients with sonographically detected cystic liver lesions were prospectively analyzed. These patients were
followed up until a final diagnosis was reached.
Results : By CT scanning we correctly localized and diagnosed 81 hepatic hydatid cysts in 50 patients. These were all proved by surgery or endoscopic retrograde cholangio-pancreatography (ERCP). Stage III and II hydatid cysts were the commonest types (29 % and 25 % respectively ). 52 % of the cysts were 5-10 cm at presentation. At CT, we identified some ancillary imaging fea
Optical properties of chromium oxide (Cr2O3) thin films which were prepared by pulse laser deposition method, onto glass substrates. Different laser energy (500-900) mJ were used to obtain Cr2O3 thin films with thickness ranging from 177.3 to 372.4 nm were measured using Tolansky method. Then films were annealed at temperature equal to 300 °C. Absorption spectra were used to determine the absorption coefficient of the films, and the effects of the annealing temperature on the absorption coefficient were investigated. The absorption edge shifted to red range of wavelength, and the optical constants of Cr2O3 films increases as the annealing temperature increased to 300 °C. X-ray diffraction (XRD) study reveals that Cr2O3 thin films are a
... Show More