This work aims to study the exploding copper wire plasma parameters by optical emission spectroscopy. The emission spectra of the copper plasma have been recorded and analyzed The plasma electron temperature (Te), was calculated by Boltzmann plot, and the electron density (ne) calculated by using Stark broadening method for different copper wire diameter (0.18, 0.24 and 0.3 mm) and current
of 75A in distilled water. The hydrogen (Hα line) 656.279 nm was used to calculate the electron density for different wire diameters by Stark broadening. It was found that the electron density ne decrease from 22.4×1016 cm-3 to 17×1016 cm-3 with increasing wire diameter from 0.18 mm to 0.3 mm while the electron temperatures increase from 0.741 to 0.897 eV for the same wire diameters. The optical emission spectrum (OES) emitted from the plasma have Hα line, small peak at 590 nm corresponding to sodium and others peaks belong to Cu I. The relationship between the plasma electron temperature, emission line intensity and number density with the formed copper nanoparticles size and concentration were studied. It was found that the nanoparticles concentration increase with emission line intensity while its size decrease. It can be conclude the existence of a controlled relationship between the plasma parameters and the formed nanoparticles concentration and size.
In This paper, sky radio emission background level associated with radio storm burst for the Sun and Jupiter is determined at frequency (20.1 MHz). The observation data for radio Jove telescope for the Sun and Jupiter radio storm observations data are loaded from NASA radio Jove telescope website, the data of Sunspot number are loaded from National Geophysical Data Center, (NGDC). Two radio Jove stations [(Sula, MT), (Lamy, NM)] are chose from data website for these huge observations data. For the Sun, twelve figures are used to determine the relation between radio background emission, and the daily Sunspot number. For Jupiter a twenty four figures are used to determine the relation between radio background emission and diffraction betwe
... Show MoreBiomass has been extensively investigated, because of its presence as clean energy source. Tars and particulates formation problems are still the major challenges in development especially in the implementation of gasification technologies into nowadays energy supply systems. Laser Induced Fluorescence spectroscopy (LIF) method is incorporated for determining aromatic and Polycyclic Aromatic Hydrocarbons (PAH) produced at high temperature gasification technology. The effect of tars deposition when the gases are cooled has been highly reduced by introducing a new concept of measurement cell. The samples of PAH components have been prepared with the standard constrictions of measured PAHs by using gas chromatograph (GC). OPO laser with tun
... Show MoreThe principal forms of radiation dosage for humans from spontaneous radiation material are being recognized as radon and its progenitors in the interior environment. Radiation-related health risks are caused by radon in water supply, which can be inhaled or ingested. Materials and Methods: The solid-state CR-39 nuclear trace detectors method was using in this research for measuring accumulation of radioactivity in water supply in different locations of Iraq's southwest corner of Baghdad. In Baghdad district, 42 samples were selected from 14 regions (3 samples out of each region) and put in dosimeters for 50 days. Results: The mean radon concentration was 49.75 Bq/m3, that is lower than the internationally recognized limit of 1100 Bq /m3. Th
... Show MoreThere are many images you need to large Khneh space With the continued evolution of storage technology for computers, there is a continuing need and are required to reduce Alkhoznip space Pictures Zguet pictures in a good way, the way conversion Alamueja to Purifiers
The present experimental work is conducted to examine the influence of adding Alumina (Al2O3) nanoparticles and Titanium oxide (TiO2) nanoparticles each alone to diesel fuel on the characteristic of the emissions. The size of both Alumina and Titanium oxide nanoparticles which have been added to diesel fuel to obtain nano-fuel is about 20 nm and 25 nm respectively. Three doses of (Al2O3) and (TiO2) were prepared (25, 50, and 100) ppm. The nanoparticles mixed with gas oil fuel by mechanical homogenous (manual electrical mixer) and ultrasonic processor. The study reveals that the adding of Aluminum oxide (Al2O3) and Titanium oxide (TiO2) to g
... Show MoreExploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Exploring the B-Spline Transform for Estimating Lévy Process Parameters: Applications in Finance and Biomodeling Letters in Biomathematics · Jul 7, 2025Letters in Biomathematics · Jul 7, 2025 Show publication This paper, presents the application of the B-spline transform as an effective and precise technique for estimating key parameters i.e., drift, volatility, and jump intensity for Lévy processes. Lévy processes are powerful tools for representing phenomena with continuous trends with abrupt changes. The proposed approach is validated through a simulated biological case study on animal migration in which movements are mo
... Show MoreMelanoidins can be diagnosed using the Fourier transform infrared (FTIR) technique. UV/Vis is an effective tool for both qualitative and quantitative analysis of chemical components in melanoidin polymers. The structural and vibrational features of melanoidin synthesized from D-glucose and D-fructose are identical, according to FTIR spectra, with the only difference being the intensity of bands. Using FTIR spectra, the skeleton of melanoidin is divided into seven major regions. The existence of the C=C, C=N, and C=O groups in all melanoidins formed from fructose and glucose with ammonia is confirmed by the areas ranging from 1600 to 1690 cm-1, and the band is largely evident as a broad shoulder. Both melan
... Show MoreIn the present work, the effect of size of zinc dust particles on
AC argon discharge characteristics are investigated
experimentally. The plasma characteristics are determined by
using optical emission spectroscopy (OES) techniques. The
results illustrated that the electron temperature (Te) in the present
and absent of Zinc dust particle is reduced with increasing of
pressure. The electron temperature decreases with increasing of
Zinc dust size. Excitation temperature Tex is reduces with
increasing of Ar pressure in present and absent of zinc dust
particles. The present of Zinc dust reduce the Tex of Ar in both
Zinc dust size. The electron density increasing in the present and
absent of both zinc dust siz
Objective: Chronic periodontitis (CP) is a common inflammatory disease that causes destruction to the supporting tissues of the teeth. Many treatment modalities tried to stop the disease progression. Platelet-rich plasma (PRP) is one of the regenerative methods that used in adjunct to conventional periodontal treatment. The aim of this study was to evaluate the anti-inflammatory effect of PRP by monitoring the lymphocyte count before and after its application to the periodontal pocket. Materials and Methods: Twenty patients, with CP and a pocket depth equal to or deeper than 4 mm, subjected to scaling, root planing, and PRP injection into the pocket. The lymphocyte count measured before an
Accurate prediction of river water quality parameters is essential for environmental protection and sustainable agricultural resource management. This study presents a novel framework for estimating potential salinity in river water in arid and semi‐arid regions by integrating a kernel extreme learning machine (KELM) with a boosted salp swarm algorithm based on differential evolution (KELM‐BSSADE). A dataset of 336 samples, including bicarbonate, calcium, pH, total dissolved solids and sodium adsorption ratio, was collected from the Idenak station in Iran and was used for the modelling. Results demonstrated that KELM‐BSSADE outperformed models such as deep random vector funct