The biggest problem of structural materials for fusion reactor is the damage caused by the fusion product neutrons to the structural material. If this problem is overcomed, an important milestone will be left behind in fusion energy. One of the important problems of the structural material is that nuclei forming the structural material interacting with fusion neutrons are transmuted to stable or radioactive nuclei via (n, x) (x; alpha, proton, gamma etc.) reactions. In particular, the concentration of helium gas in the structural material increases through deuteron- tritium (D-T) and (n, α) reactions, and this increase significantly changes the microstructure and the properties of the structural materials. Therefore, in this study, the effects of the different nuclear level density models on the excitation functions of the (n, α) reactions on 46-50Ti isotopes, an attractive candidate for the structural material for fusion reactors, have been investigated for the first time. Also, the differential cross-sections with respect to alpha energy for the emission of alpha particles of the 46-50Ti (n, xα) reactions have been investigated at 14.1 MeV incident neutron energy. The calculations are performed using the two-component exciton model in the TALYS 1.9 code, and the results are compared with available experimental data. The results of this study will contribute to nuclear database as required for improving, design and operations of the important facilities as ITER (International Thermonuclear Experimental Reactor), DEMO (The demonstration power plant) and ENS (European Nuclear Society).
The Nano materials play a very important role in the heat transfer enhancement. An experimental investigation has been done to understand the behaviors of nano and micro materials on critical heat flux. Pool boiling experiments have used for several concentrations of nano and micro particles on a 0.4 mm diameter nickel chrome (Ni-Cr) wire heater which is heated electrically at atmospheric pressure. Zinc oxide(ZnO) and silica(SiO2) were used as a nano and micro fluids with concentrations (0.01,0.05,0.1,0.3,0.5,1 g/L), a marked enhancement in CHF have been shown in the results for nano and micro fluids for different concentrations compared to distilled water. The deposition of the nano particles on the heater surface was the rea
... Show MoreWe demonstrate that the selective hydrogenation of acetylene depends on energy profile of the partial and full hydrogenation routes and the thermodynamic stability of adsorbed C2H2 in comparison to C2H4.
A series of new 1,8-naphthalimides linked to azetidinone, thiazolidinone or tetrazole moieties were synthesized. N-ester-1,8-naphthalimide (1) was obtained by direct imidation of 1,8-naphthalic anhydride with ethylglycinate. Compound (1) was treated with hydrazine hydrate in absolute ethanol to give N-acetohydrazide-1,8-naphthalimide (2). The hydrazine derivative (2) was used to obtain new Schiff bases (3-7). Three routes with different reagents were used for the cyclization of the prepared Schiff bases. Fifteen cyclic Schiff bases (8-22) with four- and five-membered rings were obtained.
The structures of the newly synthesized compounds were identified by their FTIR, 1H-NMR, 13C-NMR spectral data and some physical properties. Furtherm
Solid dispersion (SD) is one of the most widely used methods to resolve issues accompanied by poorly soluble drugs. The present study was carried out to enhance the solubility and dissolution rate of Aceclofenac (ACE), a BCS class II drug with pH-dependent solubility, by the SD method. Effervescent assisted fusion technique (EFSD) using different hydrophilic carriers (mannitol, urea, Soluplus®, poloxamer 188, and poloxamer 407) in the presence of an effervescent base (sodium bicarbonate and citric acid) in different drug: carrier: effervescent base ratio and the conventional fusion technique (FSD) were used to prepare ACE SD. Solubility, dissolution rate, Fourier transformation infrared spectroscopy (FTIR), PowderX-ray diffraction
... Show MoreObjective: To evaluate the changes in the surface quality of irreversible hydrocolloid impression material
hydrogum following disinfection with 0.525% sodium hypochlorite, 0.2% Chlorehexidine Gluconate, and 4%
Povidone Iodine.
Methodology: Forty specimens of alginate impression materials hydrogum were fabricated according to the
ISO 1563 and were divided into four groups according to the method of solution dipping: group 1: Dip in
0.525% sodium hypochlorite, group 2: Dip in 0.2% chlorhexidine gluconate, Group 3: Dip in 4% Povidone Iodine,
Group 4: No treatment with any solution (control group). Then the specimens were poured in type II stone.
Surface detail was determined using a stainless steel block in accordance w
A simple indirect spectrophotometric method for determination of mebendazol in pure and pharmaceutical formulation was presented in this study. UV-Visible spectrophotometry using the optimal conditions was developed for determination of mebendazole in pure drug and different preparation samples. The method is based on the oxidation of drug by nbromosuccinimide with hydrochloric acid and the left amount of oxidizing agent was determined by the reaction with tartarazine and the absorbance was measured at 428 nm. Calibration curves were linear in the range of 5 to 30 µg.mL-1 with molar absorptivity 8437.2 L.mol-1 .cm-1 . The limits of detection and quantification were determined and found to be 0.7770 µg.mL-1 and 2.3400 µg.mL-1 respec
... Show MoreN-Pyridin-2-ylmethyl-benzene-1,2-diamine (L) was prepared from the reaction of ortho amino phenyl thiol with 2 – amino methyl pyridine in mole ratio (1:1) . It was characterized by elemental analysis (C.H.N) , FT-IR , Uv – Vis , 1H , 13C-N.M.R . The complexes of the bivalent ions (Co , Ni , Cu ,Pd , Cd , Hg and Pb) and the trivalent (Cr) have been prepared and characterized too . The structural was established by elemental analysis (C.H.N) , FT-IR , Uv – Vis spectra , conductivity measurements , atomic absorption and magnetic susceptibility . The complexes showed characteristic behavior of octahedral geometry around the metal ions and the (N,N,N) ligand coordinated in tridentat mode except with Pd complexes sho
... Show MoreThe new ligand N-[2-(2-Phenyl hydrazinyl)Phenyl]benzothiazol-2-amine (L) was prepared from the reaction of orthoaminohydrazo benzene with 2-mercaptobenzothiazole in mole ratio (1:1). It was characterized by elemental analysis (CHN), 1H, 13C-NMR, IR and UV-Vis. The complexes of the bivalent ions Co(II), Ni(II), Cu(II), Cd(II), Hg(II) and Pb(II) have been prepared and characterized. The structural feature were established by elemental analysis (CHN), IR, UV-Vis spectra, conductivity measurements, atomic absorption and magnetic susceptibility. All complexes have been showed octahedral geometry except Cu(II) complex showed square planer. Dissociation degree, stability constant and molar absorptivity (l. mol-1. cm-1) were calculated for all c
... Show MoreFinger vein recognition and user identification is a relatively recent biometric recognition technology with a broad variety of applications, and biometric authentication is extensively employed in the information age. As one of the most essential authentication technologies available today, finger vein recognition captures our attention owing to its high level of security, dependability, and track record of performance. Embedded convolutional neural networks are based on the early or intermediate fusing of input. In early fusion, pictures are categorized according to their location in the input space. In this study, we employ a highly optimized network and late fusion rather than early fusion to create a Fusion convolutional neural network
... Show More