The natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in liquid ethanol (5 mL) was ablated. The results on the composition, morphology and optical properties of as-grown CNPs of differing laser fluence were determined. Samples were described through Fe-SEM , UV-Vis , FTIR , The synergy between ethanol as liquid growth media and fundamental laser wavelength has been due to certain distinctive characteristics of CNPs. It has been developed that the spherical CNPs achieved in the suspension of ethanol could be beneficial for antioxidant purposes.
In this work, the spectra of plasma glow produced by Nd:YAG laser operated at 1.064 μm on Al-Mg alloys with same molar ratio samples in air were analyzed by comparing the atomic lines of aluminum and magnesium with that of strong standard lines. The effect of laser energies on spectral lines, produced by laser ablation, were investigated using optical spectroscopy, the electron density was measured utilizing the Stark broadening of magnesium-aluminum lines and the electron temperature was calculated from the standard Boltzmann plot method. The results that show the electron temperature increases in magnesium and aluminum targets but decreases in magnesium: aluminum alloy target, also show the electron density increase all the aluminum,
... Show MoreIn this work, the optical emission spectrum technique was used to analyze the spectrum resulting from the CdO:Sn plasma produced by laser Nd:YAG with a wavelength of (1064) nm, duration of (9) ns, and a focal length of (10) cm in the range of energy of 500-800 mJ. The electron temperature (Te) was calculated using the in ratio line intensities method, while the electron density (ne) was calculated using Saha-Boltzmann equation. Also, other plasma parameters were calculated, such as plasma (fp), Debye length (λD) and Debye number (ND). At mixing ratios of X=0.1, 0.3 and 0.5, the CdO1-X :SnX plasma spectrum was recorded for different energies. The change
... Show MoreThis is prospective study began in Jan. 2003 and concluded in April 2004, was undertaken to examine the benefits of 810 nm diode laser in treatment of four patient with bilateral vocal cord paralysis also to compare the results with conventional treatment Material and methods: 810 nm diode laser 15 watts was used in these cases under general anesthesia, and induction of anesthetic drug done through tracheostomy tube in all patients. All patients were decanulated “Tracheostomy tube removed”, the voice of all preserved within normal. Laser surgery in this case has more benefit and advantage than conventional methods even if the patient need more than on session of laser operation because of high success rate, less complication and easy
... Show MoreThe present study was conducted on 20 patients suffering from different types of lesion like
pyogenic granuloma, peripheral giant cell granuloma, mucoceles, pregnancy tumour, Fordyce's granules
and irritating fibroma.The cases were selected from outpatient clinic of the Al Kydhemya Teaching
Hospital. Patients were treated by diode laser (810±20 nm) at the affected areas of the oral cavity with
continuous contact focused mode until excision of the lesion with coagulation of the oozing area after
excision. Patients were followed up after 2 days, 7 days and 2 weeks to assess healing process and any
post operative complication. Some of undiagnosed lesion sent for histopathological examination. No
serious complications w
In this work, the optical emission spectrum technique was used to analyze the optical emission spectrum of (CdO: Fe) plasma produced by laser Nd: YAG with a wavelength of (532) nm, a period of 10 ns, and a focal length of 10 cm in the energy range of (200-500) mJ. The electron temperature (Te) was determined using the method of line intensities ratio. Using the Saha-Boltzmann equation, the electron density (ne) was determined. Other plasma parameters such as plasma frequency (fp), Debye length (λD) and Debye number (ND) were also measured. The CdO: Fe (at a mixing ratio of X= 0.5.) plasma spectrum was observed for different energies. As a fu
... Show MoreIn this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti
... Show MoreIn the present study, gold nanoparticles (AuNPs) were prepared using a simple low cost method synthesized cold plasma at different exposure time . The nanoparticles were characterized using UV-Visible spectra, X-ray diffraction (XRD). The prepared AuNPs showed surface Plasmon resonance centered at 530, 540,and 533 nm. The XRD pattern showed that the strong intense peaks indicate crystalline nature and face centered cubic structure of gold nanoparticles for all samples were prepared .The average crystallite size of the AuNPs was 20-40 nm. Morphology of the AuNPs were carried out using FESEM. Observations show that the AuNPs synthesized we well dispersed with and particle sizes ranging from 9 to 31 nm with spherical shapes which are cle
... Show MoreBiocompatible gold nanoparticles were successfully synthesized by hibiscus plant leaf extract as a bioreactor. The prepared nanoparticles were evaluated using UV/Vis spectroscopy, Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction and Scanning Electron Microscopy (SEM) . The study also investigated the effect of the different gamma irradiation doses on the size and dispersion of the produced nanoparticles. In UV- Vis spectra, the peak of Au NPs' surface plasmon resonance (SPR) was detected as a single peak at 543 nm. The gamma irradiation induced a blue shift in the SPR peak, which indicates that it might be applied as affective factor for size control. Physical as well as chemi
... Show MoreIn this work; copper oxide films (CuO) were fabricated by PLD. The films were analyzed by UV-VIS absorption spectra and their thickness by using profilometer. Pulsed Nd:YAG laser was used for prepared CuO thin films under O2 gas environment with varying both pulse energy and annealing temperature. The optical properties of as-grown film such as optical transmittance spectrum, refractive index and energy gap has been measured experimentally and the effects of laser pulse energy and annealing temperature on it were studied. An inverse relationship between energy gap and both annealing temperature and pulse energy was observed.
The Corrosion protection effectiveness of Alimina(Al2O3,50nm)and Zinc oxide (ZnO,30nm) nanoparticales were studied on carbon steel and 316 stainless steel alloys in saline water (3.5%NaCl)at four temperatures: (20,30,40,50 OC)using three electrodes potentiostat. An average corrosion protection efficiencies of 65 %and 80% was achieved using Al2O3 NP's on carbon steel and stainless steel samples respectively, and it seems that no effect of rising temperature on the performances of the coated layers. While ZnO NP'S showed protection efficiency around 65% for the two alloys and little effected by temperature rising on the performanes of the coated layers. The morphology of the coated spesiemses was examined by Atomic force microscope.