The preparation and characterization of innovative nanocomposites based on zinc oxide nanorods (ZNR) encapsulated by graphene (Gr) nanosheets and decorated with silver (Ag), and cupper (Cu) nanoparticles (NP) were studied. The prepared nanocomposites (ZNR@Gr/Cu-Ag) were examined by different techniques including Field Emission Scanning Electron Microscope (FESEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), UV-Vis spectrophotometer and fluorescence spectroscopy. The results showed that the ZNR has been good cover by five layers of graphene and decorated with Ag and Cu NPs with particles size of about 10-15 nm. The ZNR@Gr/Cu-Ag nanocomposites exhibit high absorption behavior in ultraviolet (UV) region of spectrum. In comparison with ZNR, the ZNR@Gr/Cu-Ag nanocomposites reveal superior absorption in the entire region of 387–1000 nm. Moreover, the band gap decreases from 3.2 eV of ZNR to 1.2 eV for ZNR@Gr/Cu-Ag nanocomposites. Taking into account the superiority of ZNR@Gr/Cu-Ag nanocomposites in terms of easy fabrication, low cost method, and environmental friendliness which made it favorable for huge-scale preparation in many applications such as water splitting, sensor, solar cell, antibacterial and optoelectronic devices.
Background: The potential use of zinc oxide and other metal oxide nanoparticles in biomedical are gaining interest in the scientific and medical communities, largely due to the physical and chemical properties of these nanomaterials. The present work revealed the effect of zinc oxide nanoparticles (ZnONPs) on the total salivary peroxidase enzyme activity of human saliva in comparison to de-ionized water. Materials and methods: Forty eight unstimulated saliva samples were collected from dental students/University of Baghdad 18-22 years. Then measure the total salivary peroxidase activity first without any addition to human saliva as a control, second with dilution the saliva with de-ionized water, and third with zinc oxide nanoparticles in c
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreThis research paper studies the use of an environmentally and not expensive method to degrade Orange G dye (OG) from the aqueous solution, where the extract of ficus leaves has been used to fabricate the green bimetallic iron/copper nanoparticles (G-Fe/Cu-NPs). The fabricated G‑Fe/Cu-NPs were characterized utilizing scanning electron microscopy, BET, atomic force microscopy, energy dispersive spectroscopy, Fourier-transform infrared spectroscopy and zeta potential. The rounded and shaped as like spherical nanoparticles were found for G-Fe/Cu‑NPs with the size ranged 32-59 nm and the surface area was 4.452 m2/g. Then the resultant nanoparticles were utilized as a Fenton-like oxidation catalyst. The degradation efficiency of
... Show MoreThe doping process with materials related to carbon has become a newly emerged approach for achieving an improvement in different physical properties for the obtained doped films. Thin films of CuPc: C60 with doping ratio of (100:1) were spin-coated onto pre-cleaned glass substrates at room temperature. The prepared films were annealed at different temperatures of (373, 423 and 473) K. The structural studies, using a specific diffractometry of annealed and as deposited samples showed a polymorphism structure and dominated by CuPc with preferential orientation of the plane (100) of (2θ = 7) except at temperature of 423K which indicated a small peak around (2θ = 3
A fully automatic electrothermal atomic emission spectrometry (ETA-AES) is described. This system is based on an echelle monochromator modified for wave¬length modulation which is completely controlled by microcomputer . The advantages of the system in atomic spectrometry have been discussed . Aspects of the analytical performances such as calibration ? dection limit, precision , and recovery for copper are considered . This system is applied for routine determination of copper in commercial powdered mill? by slurr>' atomization versus aqueous atomization techniques.
The aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of c
... Show MoreMWCNTs and hybrid nanocomposite ZnO/Se/MWCNTs have been prepared via Solvothermal technique using Parr reactor at the temperature 180°C and SeCl2 as a catalyst. The obtained MWCNTs and ZnO/Se/MWCNTs are investigated using the FE-SEM, XRD, UV-VIS Spectroscopy and Z-Scan. The novelty of this research is studying the nonlinear optical properties for these prepared materials and the results exhibit that the thickness of the deposited film for hybrid nanocomposite ZnO/Se/MWCNTs is increased, which in turn, increase the nonlinear phase shift of the laser beam compared with the MWCNTs.