The study effect Graphene on optical and electrical properties of glass prepared on glass substrates using sol–gel dip-coating technique. The deposited film of about (60-100±5%) nm thick. Optical and electrical properties of the films were studied under different preparation conditions, such as graphene concentration of 2, 4, 6 and 8 wt%. The results show that the optical band gap for glass-graphene films decreasing after adding the graphene. Calculated optical constants, such as transmittance, extinction coefficient are changing after adding graphene. The structural morphology and composition of elements for the samples have been demonstrated using SEM and EDX. The electrical properties of films include DC electrical conductivity; we found an increasing in current as graphene concentration increases.
In this work, porous Silicon structures are formed with photochemical etching process of n-type Silicon(111) wafers of resistivity (0.02.cm) in hydrofluoric acid (HF) of concentration (39%wt) under light source of tungeston halogen lamp of (100 Watt) power. Samples were anodized in a solution of 39%HF and ethanol at 1:1 for 15 minutes. The samples were realized on n-type Si substrates Porous Silicon layers of 100m thickness and 30% of porousity. Frequency dependence of conductivity for Al/PSi/Si/Al sandwich form was studied. A frequency range of 102-106Hz was used allowing an accurate determination of the impedance components. Their electronic transport parameters were determined using complex impedance measurements. These measu
... Show MoreThis work introduces a new electrode geometry for making holes with high aspect ratios on AISI 304 using an electrical discharge drilling (EDD) process. In addition to commercially available cylindrical hollow electrodes, an elliptical electrode geometry has been designed, manufactured, and implemented. The principal aim was to improve the removal of debris formed during the erosion process that adversely affects the aspect ratio, dimensional accuracy, and surface integrity. The results were compared and discussed to evaluate the effectiveness of electrode geometry on the machining performance of EDD process with respect to the material removal rate (MRR,) the electrode wear rate (EWR), and the tool wear ratio (TWR). Dimensional features an
... Show MoreA competitive adsorption of Cu2+, Ni2+, and Cd2+ ions from a synthetic wastewater onto nanomaterial was studied.(Fe3O4) nanoparticles obtained from US Research Nanomaterials, Inc., Houston, TX 77084, (USA), was used as nanosorbent. Experimental parameters included pH, initial metal concentrations, and temperature were studied for nanosorbent. The uptake capacity 11.5, 6.07 and 11.1 mg/g for Cu2+, Ni2+and Cd2+, respectively, onto nanosorbent . The optimum pH values was 6 and the contact time was 50 min. for Cu2+, Ni2+and Cd2+, respectively. The equilibrium isotherm for
... Show MoreNano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show MoreAn experimental and numerical study has been carried out to investigate the heat transfer by natural convection and radiation in a two dimensional annulus enclosure filled with porous media (glass beads) between two horizontal concentric cylinders. The outer cylinders are of (100, 82 and70mm) outside diameters and the inner cylinder of 27 mm outside diameter with (or without) annular fins attached to it. Under steady state condition; the inner cylinder surface is maintained at a high temperature by applying a uniform heat flux and the outer cylinder surface at a low temperature inside a freezer. The experiments were carried out for an annulus filled with
glass beads at a range of modified Rayleigh number (4.9 ≤ Ra≤ 69), radiation
In this contribution, density functional theory-based calculations have been carried out to assess the electronic, photocatalytic and optical properties of Ce1-xTixO2 system. Ti incorporation leads to a decrease of Ce 4f states and enhancement of Ti 3d states in the bottom of conduction band. Furthermore, it was found that doping ceria with Ti-like transition metals could evidently shift the absorption of pure CeO2 towards higher wavelength range. These findings can provide some new insights for designing CeO2-based photocatalysts with high photocatalytic performance. To the best of our knowledge, this investigation calculates Mullikan’s charge transfer of Ce1-xTixO2 system for the first time. Charge transfer reveals an ionic bond between
... Show MoreThe ceramic compound Mg1-xSixAl2O4 (x= 0, 0.1, 0.2, 0.3, 0.4) was prepared from nano powder of Al2O3 and MgO doped with Nano powder of SiO2 at different molar ratios. The specimens were prepared by standard chemical solid reaction technique and sintered at 1450 oC. Structure of the specimens was analyzed by using X-ray diffraction (XRD). The X-ray patterns of the specimens showed the formation of pure simple cubic spinel structure MgAl2O4 phase with space group of ̅ . The average grain size and surface topology were studied by atomic force microscopy. The results showed that the average grain size was about 73-90 nm. The DC electrical properties of the specimen were measured. The apparent density was found to increase and the porosity a
... Show MoreIn this study the thermal conductivity of the epoxy composites were characterized as function of volume fraction, particle size of fillers and the time of immersion(30,60,90)days in water .Composites plates were prepared by incorporating (bi-directional) (0º-90º) glass fiber and silicon carbide (SiC) particles of (0.1,0.5,1)mm as particle size at (10%,20%,30%,40%) percent volume in epoxy matrix.
The composites shows slightly increase of the thermal conductivity with increasing volume fraction, particle size and increase with increasing the days of immersion in water. The maximum thermal conductivity (0.51W/m.K) was obtained before the immersion in water at 90 days for epoxy reinforcement by bi-directional glass fiber and SiC particl
DC planar sputtering system is characterized by varying discharge potential of (250-2000 volt) and Argon gas pressures of (3.5×10-2 – 1.5) mbar. The breakdown voltage for silver electrode was studied with a uniform electric field at different discharge distances, as well as plasma parameters. The breakdown voltage is a product of the Argon gas pressure inside the chamber and gab distance between the electrodes, represent as Paschen curve. The Current-voltage characteristics curves indicate that the electrical discharge plasma is working in the abnormal glow region. Plasma parameters were found from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values of the electron temperature an
... Show MoreIn this work was prepared three different types of modified screen printed carbon electrode (SPCEs) with drops casted method, the used carbone nanomaterials were the MWCNT, functionalized –MWCNT (f-MWCNT) and After several experiments were made to find an appropriate ratio to make good GOT/f-MWCNT nanocomposite, and found the suspension mixture (1:1) from GOT/f-MWCNT (f-MWCNT-GOT). The electrical and physical properties were performed with cyclic voltammeter technique, and studied the maximum current response, the effective surface area, effect of the pH value and the determination of active surface area for MWCNT-SPCE , f-MWCNT-SPCE and f-MWCNT-GOT/SPCE as (0.04 cm2), (0.119 cm2) and (0.115 cm2) respectively, the surface coverage concent
... Show More