In this study, method for experimentally determining the electron density (ne) and the electron temperature (Te) in the atmospheric Argon plasma jet is used; it is based on optical emission spectroscopy (OES). Boltzmann plot method used to calculate these parameters measured for different values of gas flow rate. The results show that the electron temperature decreasing with the increase of gas flow rate also indicates an increasing in the electron density of plasma jet with increasing of gas flow rate.
Gas coning is one of the most serious problems in oil wells. Gas will reach the perforations and be produced with oil. Anyhow there is a certain production rate called critical production rate. The daily production rate should not exceed the critical production rate. In this research ten oil wells have been tested for problem of gas coning for a period of time of eighteen months. The production rates of these Ten oil wells are tabulated in a table exist in this research.
These production rates are considered as critical production rate because no gas coning has been observed in these wells. The critical production rates of these wells don't concide with those obtained from (Meyer, Gardiner, Pirson) method and also they don’t concide
In the field of research in the investment of gas fields, this requires that we first look at the center of the contracting parties in terms of the guarantee means granted to them under the contract, which constitute a means of safety and motivation to enter as major parties in the investment project. In turn, we will discuss the minimum guarantees, which are the most important guarantees granted to each of the two parties to the contract, namely the national party and the investor.
Optimization of gas lift plays a substantial role in production and maximizing the net present value of the investment of oil field projects. However, the application of the optimization techniques in gas lift project is so complex because many decision variables, objective functions and constraints are involved in the gas lift optimization problem. In addition, many computational ways; traditional and modern, have been employed to optimize gas lift processes. This research aims to present the developing of the optimization techniques applied in the gas lift. Accordingly, the research classifies the applied optimization techniques, and it presents the limitations and the range of applications of each one to get an acceptable level of accura
... Show MoreThe population has been trying to use clean energy instead of combustion. The choice was to use liquefied petroleum gas (LPG) for domestic use, especially for cooking due to its advantages as a light gas, a lower cost, and clean energy. Residential complexes are supplied with liquefied petroleum gas for each housing unit, transported by pipes from LPG tanks to the equipment. This research aims to simulate the design and performance design of the LPG system in the building that is applied to a residential complex in Baghdad taken as a study case with eight buildings. The building has 11 floors, and each floor has four apartments. The design in this study has been done in two parts, part one is the design of an LPG system for one building, an
... Show MoreThe work includes fabrication of undoped and silver-doped nanostructured nickel oxide in form thin films, which use for applications such as gas sensors. Pulsed-laser deposition (PLD) technique was used to fabricate the films on a glass substrate. The structure of films is studied by using techniques of x-ray diffraction, SEM, and EDX. Thermal annealing was performed on these films at 450°C to introduce its effect on the characteristics of these films. The films were doped with a silver element at different doping levels and both electrical and gas sensing characteristics were studied and compared to those of the undoped films. Reasonable enhancements in these characteristics were observed and attributed to the effects of thermal annealing
... Show MoreIn this work, a (CdO)0.94:(In2O3)0.06 film was developed on a glass substrate using Q- switching pulse laser beam (Nd:YAG; wavelength 1064 nm). The quantitative elemental analysis of the (CdO)0.94:(In2O3)0.06 thin film was achieved using energy dispersive X- ray diffraction (EDX). The topological and morphological properties of the deposited thin film were investigated using atomic force microscope (AFM) and field emission scan electron microscopy (FESEM). The I-V characteristic and Hall effect of (CdO)0.94 :(In2O3)0.06 thin films were used to study the electrical properties. The gas sensor prope
... Show MoreAn NH3 gas sensor was prepared from nanocomposite films of indium oxide-copper oxide mixtures with ratios of 0 , 10 , and 20 Vol % of copper oxide. The films were deposited on a glass substrate using chemical spray pyrolysis method (CSP) at 400oC. The structural properties were studied by using X-ray diffraction (XRD) and atomic force microscopy ( AFM). The structural results showed that the prepared thin films are polycrystalline, with nano grain size. By mixing copper oxide with indium oxide, the grain size of the prepared thin films was decreased and the surface roughness was increased. The UV-Visible spectrometer analysis showed that the prepared thin films have high transmittance.
... Show MoreA new laboratory study conducted on stepped spillways in order to investigate their efficiency of dissipating flow energy. All previous study on stepped spillway indicated that the flow energy dissipation decreased as increasing in discharge. Increasing in the step numbers and the spillway slope led to energy dissipation decrease. In this study, an experimental attempt to increase energy dissipation at variable discharges was performed on stepped spillway and that leads to decreasing the cost of initiating the stilling basin or may be ignoring it. Five spillways were constructed from concrete and tested to investigate and compare among them. Three were roughed by gravel with different size for each one, one of them was s
... Show MoreThis paper reports experimental and computational fluid dynamics (CFD) modelling studies to investigate the effect of the swirl intensity on the heat transfer characteristics of conventional and swirl impingement air jets at a constant nozzle-to-plate distance ( L = 2 D). The experiments were performed using classical twisted tape inserts in a nozzle jet with three twist ratios ( y = 2.93, 3.91, and 4.89) and Reynolds numbers that varied from 4000 to 16000. The results indicate that the radial uniformity of Nusselt number (Nu) of swirl impingement air jets (SIJ) depended on the values of the swirl intensity and the air Reynolds number. The results also revealed that the SIJ that was fitted with an insert of y = 4.89, which correspo
... Show More